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Abstract. Real-world networks display a strong heterogeneity that is
reflected in a heavy-tailed distribution of node influence indices. The
PageRank and the Max-Linear Model may be used as node influence
indices of random graphs. The present paper aims to summarize shortly
some recent author’s results with regard to extremal properties of max-
ima and sums of non-stationary random length sequences and their ap-
plication to evolving networks. Under the extremal properties we under-
stand the tail and extremal indices. The evolution of the random network
by the preferential attachment is considered since it allows us to model
heavy-tailed distributed node influence indices.
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1 Introduction

Real-world networks display a strong heterogeneity that is reflected in a heavy-
tailed distribution of node influence indices. The in-degree, the PageRank (PR)
and the Max-Linear Model (MLM) may be used as node influence indices of
random graphs. The PRs and MLMs are proved to be regularly varying heavy-
tailed distributed random variables (r.v.s) [4,5,14].

The present paper aims to summarize shortly some recent author’s results
with regard to extremal properties of maxima and sums of non-stationary ran-
dom length sequences and their application to evolving networks. Under the
extremal properties we understand the tail and extremal indices. The tail in-
dex (TI) and extremal index (EI) of the PRs and MLMs of newly appended
nodes in evolving random networks are proposed to be predicted in [10]. The
TI shows a heaviness of the distribution tail. The EI reflects a cluster structure
of the stochastic process or its local dependence. It is known that the recip-
rocal of the EI approximates a mean cluster size of the stochastic process, i.e.
the mean number of exceedances over a threshold per cluster [6]. The cluster of
exceedances of the random sequences may imply a block of data with at least
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one extreme observation (an exceedance) over a sufficiently high threshold [1],
or a set of consecutive exceedances of the process over a sufficiently high thresh-
old [3,12]. Clusters can also be defined as data blocks separated by some number
of observations running under the high threshold [1].

The clustering structure may arise in random networks (and in the random
graphs modeling them) and it can be increase rapidly over time. In fact, the
clusters are built around giant nodes with a large number of links to the rest
of the nodes. A network evolution means that a graph grows by adding new
edges between existing nodes and newly appended nodes or between existing
nodes only at discrete time steps. At each such a step, a new node may be
either added or not. The evolution is often modeled by preferential attachment
(PA) tools (see [2,13,15] among others) to explain power-law degree distributions
observed in real-world networks [2]. Then a newly appended node prefers to
attach to existing nodes with large node degrees (in the simplest case to one of
the existing nodes). To model the evolution of directed random graphs, the α−,
β− and γ− PA schemes are proposed in [15] since they may create graphs with
multiple edges between nodes and self-loops. The survey of results concerning
the evolution of random networks and related extreme value statistics can be
found in [11]. The evolution with a deletion of existing nodes or edges at each
step is not enough studied yet, and this gap is partially filled by the simulation
study in [8].

The aim of the paper [10] was to find the TI and EI of the PR and MLM
in the PA-evolved random graphs those are dynamically changing in time. To
this end, results of extreme value theory obtained in [7,9] are applied to random
networks. Namely, the TI and EI of sums and maxima of weighted non-stationary
random length sequences of regularly varying r.v.s are derived in [7,9]. In [7],
conditions were found such that the sums and maxima have the same TI and
EI. The latter indices are equal to ones of the most heavy-tailed term in the sum
or maximum if such term is unique.

If there is a random number d of the most heavy-tailed dependent terms,
then an additional condition regarding the mutual dependence between terms
is required to make a conclusion about the TIs and the EIs of the sums and
maxima [9]. Particularly, if the most heavy-tailed terms with the minimum TI
are independent, then the sums and maxima have the same minimum TI. Their
EI exists and it can be simply calculated as a linear combination of the EIs of the
most heavy-tailed terms. The independence condition can be weakened assuming
that the tail function of the sum of such terms is asymptotically equivalent to
the tail of one of such terms. The latter assumption allows us to turn back
to the case of the unique term with the minimum TI. To determine the EI of
the sums and maxima in the case of the d most heavy-tailed terms we need to
assume the asymptotic equivalence of the maxima over d dependent “columns”
and the maxima over one of these “columns” [9]. Under the “column” sequence
we understand the observations of a random term.

The contribution of the application paper [10] is as follows. Starting with a
set of weakly connected stationary seed communities as a hot spot and ranking
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them with regard to the TIs of their node PRs, the TI and EI of the PRs
and MLMs of new nodes appended to the network may be determined by the
most heavy-tailed community. This procedure allows us to predict a temporal
network evolution in terms of the TI and EI. The exposition in [10] is provided by
algorithms, examples and a study of simulated and real evolved random graphs.

In the next section we give a more detailed description of main results.

2 Main results

In [7], a doubly-indexed array {Yn,i : n, i ≥ 1} of nonnegative r.v.s in which the
“row index” n corresponds to time, and the “column index” i enumerates the
series, is considered. The length Nn of “row” sequences {Yn,i : i ≥ 1} for each
n is generally random and {Nn : n ≥ 1} is a sequence of non-negative integer-
valued r.v.s. For each i, the “column” sequence {Yn,i : n ≥ 1} is assumed to be
strict-sense stationary with EI θi and having a regularly varying distribution tail
P{Yn,i > x} = ℓi(x)x

−ki , where ki > 0 is the TI and ℓi(x) is a slowly varying
function. There are no assumptions on the dependence structure in i. Assuming
that there is a unique “column” sequence with a minimum TI k1, and Nn has
a lighter tail than Yn,i, it was found in [7] that the TI and EIs of the weighted
sums and maxima

Y ∗
n (z,Nn) = max(z1Yn,1, ..., zNnYn,Nn),

Yn(z,Nn) = z1Yn,1 + ...+ zNnYn,Nn , (1)

with positive constants z1, z2, ..., are equal to k1 and θ1, respectively. If there
is a random number d of such “column” sequences with TI k1, then the sums
and maxima may also have the same TI k1 and the same EI, but it requires
additional dependence conditions on the latter “column” sequences [9].

These results are applied in [10] to random graphs. Let us explain the main
idea of this application. A seed graph from which the evolution starts is divided
into communities. The PRs of nodes in the communities are calculated. The
communities are ranked by their TI estimates assuming that the PRs of each
community are stationary distributed with a regularly varying tail. The com-
munities are considered as the “column” sequences, where Nn is the random
number of communities. We call the community as “dominating” one if its TI is
minimal and thus, the distribution of its PRs is the most heavy-tailed.

Let a set of new nodes be appended within a fixed time interval of the evolu-
tion. A new node can be considered as a root of the tree. Then Nn is at the same
time an in-degree of the root node n that is the number of its nearest neighbors
with incoming links to the root. The new nodes are divided into classes. If a new
node has at least one link to the community with the minimum TI k1, then the
node is related to Class 1 with the TI k1 and the EI θ1 if such community is
unique. Indeed, the TIs may only be estimated and the TI estimates are likely
different. Hence, we may assume that there is such unique community. Those
nodes which have no links to the “dominating” community may have links to
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the second “dominating” one that has the second minimum TI k2 > k1, and we
say that such nodes are related to Class 2, etc. Theorem 1 proved in [10] states
that the TI and EI of the newly appended nodes are determined by the TI and
EI of the communities of the seed graph. If nevertheless the TIs estimates of
the “dominating” communities are close, then one has to investigate the mutual
dependence between these communities as it follows from [9].

Let us explain more precisely how (1) may relate to the PRs and the MLMs.
The PR R of a randomly chosen Web page (a node in the Web graph) is viewed
as a r.v.. This R has been considered in [4,14] as the solution to the fixed-point
problem

R =D
N∑
j=1

AjRj +Q, (2)

where =D denotes equality in distribution. In the same way, a MLM is considered
as the ’minimal/endogeneous’ solution of the equation [5]

R =D

 N∨
j=1

AjRj

 ∨Q. (3)

One can rewrite the right-hand sides of (2) and (3) as, respectively,

Yi(c,Ni) = c

Ni∑
j=1

Yi,j +Qi, Y ∗
i (c,Ni) = c

Ni∨
j=1

Yi,j ∨Qi, i ∈ {1, ..., n}.

Yi(c,Ni) relates to the definition of Google’s PR with a damping factor c > 0
and Q is a personalization value of the node [14]. The following recursions

Y
(m)
i,j = c

Ni∑
s=j

Y
(m−1)
i,s +Qi, (4)

X
(m)
i,j =

c

Ni∨
s=j

X
(m−1)
i,s

 ∨Qi, {X(0)
i,j } ≡ {Y (0)

i,j }, (5)

where m, i, j ≥ 1, m is connected with the time, were considered in [10].

In [10], matrices related to the scheme of series {Y (0)
n,i : n, i ≥ 1} and the

corresponding TI and EI (k
(0)
i , θ

(0)
i ) were considered:

A(0) =


Y

(0)
1,1 Y

(0)
1,2 Y

(0)
1,3 ... 0 Q1

Y
(0)
2,1 0 Y

(0)
2,3 ... Y

(0)
2,N2

Q2

... ... ... ... ... ...

Y
(0)
n,1 Y

(0)
n,2 Y

(0)
n,3 ... Y

(0)
n,Nn

Qn

 , (6)
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k
(0)
1 k

(0)
2 k

(0)
3 ... k

(0)
N k

(0)
N+1

θ
(0)
1 θ

(0)
2 θ

(0)
3 ... θ

(0)
N 1

)
.

Here, {Qi} is a sequence of independent identically distributed r.v.s. Due to
independence, its EI is equal to 1.

The network communities may be interpreted as the columns of matrix A(0).

A zero jth element in the ith row Y
(0)
i,j of A(0) means that the ith root node has

no followers in the jth community or there is no link between them. For instance,
if a row corresponds to a set of papers citing a book, then zero implies that the
book is not cited by a paper from the corresponding community. If books are
cited by papers from the “dominating” community, then the TI and EI of PRs
of the books are determined by ones of the latter papers.

The matrix A(0) corresponds to an initial (un)directed graph (a seed net-
work) that is used to start an evolution of the graph in time by means of some

attachment tool. The jth column {Y (m)
i,j }i≥1 (or {X(m)

i,j }i≥1) of the matrix A(m)

is defined by (4) (or (5)) using the submatrix {Y (m−1)
n,i : n ≥ 1, i ≥ j} (or

{X(m−1)
n,i } : n ≥ 1, i ≥ j}) of the matrix A(m−1). The evolution looks like the

“domino principle” [10]. The principle implies that the first column of A(m),
m ≥ 1, calculated as sums (or maxima) over the rows of A(m−1), has the mini-
mum TI among all columns of A(m−1). The second column of A(m) is calculated
by the same row elements apart of the elements related to the first column of
A(m−1). Hence, the TI of the second column is equal to the second minimum
among TIs of A(m−1), etc. The “domino principle” is generalized in [10] to the
case when random numbers of columns have the minimum, the second minimum
of the TI, etc, by [9]. It is important that for each row at least one element cor-
responding to the “column” sequences with the minimum TI has to be non-zero.
Otherwise, the sums and maxima over rows may be non-stationary distributed
with different TIs. It is proposed in [10] to permute the rows of A(0) to have
blocks of rows with non-zero elements at least in one of the most heavy-tailed
distributed column in the block.

It is derived in [10] that {Y (m)
i,j }i≥1 and {X(m)

i,j }i≥1 calculated by (4) and (5)

have the same TI k
(0)
j < k, where k := limn→∞ infj+dj≤i≤ln k

(0)
i and the same

EI θ
(0)
j if dj = 1 for any 1 ≤ j ≤ ln − 1 for any m ≥ 1.

3 Discussion and open problems

Since the nodes of the graph cannot be definitely enumerated, the definition and
testing of the stationarity in the graphs or their communities remain an open
problem. ’One can determine that a graph is stationary if for all finite sets of
vertices with the same adjacency matrices the joint distributions of their in- and
out-degrees are the same’ [8]. The dependence detection between communities
constitutes another open problem. Its solution can be based on the detection of
the dependence of vectors, for instance, by the distance correlation, that in case
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of graphs requires a proposal of a permutation test. Testing of stationarity and
dependence of random graphs is discussed in [11].

The TIs and EIs of the PRs and MLMs of the sequence of the root nodes in
a graph as well as the classification of newly appended nodes during evolution
by their TIs constitute novelty, see [10]. The latter results serve as a motivation
of the theoretical achievements of papers [7] and [9] that relate to the TIs and
EIs of non-stationary random length sequences of r.v.s.
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