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Abstract. A model of a configuration graph on N vertices is considered
where the number of edges is at most n. The degrees of the vertices are
independent random variables identically distributed to the power law
that depends on a slowly varying function with remainder term. We
obtained the limit distributions of the maximum vertex degree and the
number of vertices with a given degree as N,n → ∞.
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1 Introduction

The study of random graphs has been gaining attention with the wide use of
these models for the description of different complex networks (see e. g. [1]).
Observations on real networks showed that their topology can be described by
random graphs with vertex degrees being independent identically distributed
random variables. Furthermore, it turned out that the number of vertices with
degree k is proportional to k−τ , where τ > 1. This means that the distribution
of random variable ξ, being equal to an arbitrary vertex degree, can be defined
as follows:

pk = P{ξ = k} =
h(k)

kτ
, k = 1, 2, . . . , (1)

where h(k) is a slowly varying function [2]. One of the most appropriate graphs
for modeling the networks is so called configuration graph [3]. The random vari-
able ξ in such graph takes natural values equal to the number of vertex semiedges,
i. e. edges for which the adjacent vertices are not yet specified. All semiedges
are numbered in an arbitrary order. The sum of vertex degrees in any graph
has to be even, so if the sum is odd we add one extra vertex with degree one.
The graph is constructed by joining all semiedges pairwise equiprobably to form
edges. Noted [4] that an additional vertex together with its semiedge does not
influence the graph behaviour as the number of graph vertices tends to infinity.
So in what follows we shall consider the degrees only for the initial vertices even
though an extra vertex is introduced. It is easy to see that such graphs may have
loops and multiple edges.
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The papers [5, 6] were concerned with conditional configuration graphs with
a known number of edges. The vertex degree distributions in these studies are
fully known, since the slowly varying function h(x) in (1) is a constant. In [7] it
was assumed that

pk ∼ d

kg(ln k)h

as k → ∞, where d > 0, g ⩾ 1, h ⩾ 0, g + h > 1.
Networks are more naturally described by models in which the number of

edges in the graph is bounded from above. Configuration graphs with this con-
dition were studied for the first time in [8] where it was assumed that

pk =
1

kτ
− 1

(k + 1)τ
, k = 1, 2, . . . , τ > 0.

This paper considers configuration graphs consisting of N vertices in which
the random variable ξ has the distribution (1), where τ > 3. We denote by
ξ1, . . . , ξN the degrees of vertices 1, . . . , N respectively. These random variables
are independent and equidistributed with ξ. Such random graph naturally in-
duces a probability measure on the subset of realisations in which ξ1+ . . .+ξN ⩽
n, that is, the number of the semiedges of the graph is not greater than n.. We
consider the conditional random graph arising in this way with a bounded total
sum of vertex degrees. Denote by η1, . . . , ηN the random variables defined as the
degrees of vertices 1, . . . , N in this conditional configuration graph. It is evident
that these random variables are dependent.

A well-known elementary property (see, f. e., [2]) of a slowly varying function
is that as x → ∞ and any δ > 0

x−δ < h(x) < xδ. (2)

Let τ > 3. From (1), (2) we get that the random variable ξ has a finite expecta-
tion m = Eξ and variance σ2 = Dξ :

m =

∞∑
k=1

h(k)

kτ−1,
, σ2 =

∞∑
k=1

h(k)

kτ−2
−m2. (3)

Assume that the function h(x) is a slowly varying function with a remainder
term. The definition of such a function is given in [9] and consists in the following.
Let φ(x) be a positive increasing function such that φ(x) → ∞ as x → ∞ and for
some positive numbers θ,X function φ(x)/xθ does not increase on the interval
(X,∞). A positive measurable function h(x) is called a slowly varying function
with remainder term φ(x) if for all λ > 0

h(λx)

h(x)
= 1 +O

(
1

φ(x)

)
(4)

as x → ∞. A well-known example of a slowly varying function with a remainder
term is the logarithm.
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We denote by η(N) and µr the maximum vertex degree and the number of
vertices with degree r respectively. Below we prove limit theorems for η(N) and
µr for different behaviours of the parameters N,n, r.

The paper is organised as follows. The main results (Theorems 1 - 3) are
formulated in Section 2. Section 3 discusses the connection of the problem under
consideration with the generalized scheme of allocating particles to cells. Section
4 deals with some auxiliary results, which are used later in Section 5 to prove
Theorems 1 - 3.

2 Statement of the main results

The next theorems are proved.

Theorem 1. Let N,n → ∞, in such a way that

n−Nm√
N

⩾ C > −∞ (5)

and r = r(N,n) is chosen such that

Nh(r)

(τ − 1)rτ−1
→ γ, (6)

where γ is a positive constant. Then

P{η(N) ⩽ r} → e−γ .

Theorem 2. Let N,n → ∞, Npr(1− pr) → ∞ and

n−Nm√
N

→ ∞. (7)

Then

P{µr = k} =
1 + o(1)√

2πNpr(1− pr)
e−u2

r/2

uniformly in the integer k such that ur = (k −Npr)/
√
Npr(1− pr) lies in any

fixed finite interval.

Theorem 3. Let N,n, r → ∞ and suppose that the condition (5) is satisfied.
Then, for a nonnegative integer k,

P{µr = k} =
(Npr)

k

k!
e−Npr (1 + o(1))

uniformly with respect to (k −Npr)/
√
Npr in any fixed finite interval.
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3 Connection to the generalized scheme of allocation

The technique of obtaining Theorems 1 - 3 is based on the generalized scheme of
allocations suggested by V. F. Kolchin [10]. It is easy to see that if η1+. . .+ηN =
n, then

P{η1 = k1, . . . , ηN = kN} = P{ξ1 = k1, . . . , ξN = kN |ξ1 + . . .+ ξN = n}.

This equality means that the conditions of generalized scheme are valid. It is
also clear that in our conditional configuration graph

P{η1 = k1, . . . , ηN = kN} = P{ξ1 = k1, . . . , ξN = kN |ξ1 + . . .+ ξN ⩽ n}. (8)

In papers [11, 12] a pair of N-tuples of random variables (η1, . . . , ηN ), (ξ1, . . . , ξN )
satisfying the relation (8) was called an analogue of the generalized scheme of
allocation.

We introduce auxiliary random variables ξ
(r)
1 , . . . , ξ

(r)
N such that

P{ξ(r)i = k} = P{ξi = k|ξi ⩽ r}, (9)

where i = 1, . . . , N, k = 1, . . . , r. Let ξ̃
(r)
1 , . . . , ξ̃

(r)
N be random variables with the

distribution
P{ξ̃(r)i = k} = P{ξi = k|ξi ̸= r}, (10)

i = 1, . . . , N, k = 1, 2, . . . We also set

ζN = ξ1 + . . .+ ξN , ζ
(r)
N = ξ

(r)
1 + . . .+ ξ

(r)
N , ζ̃

(r)
N = ξ̃

(r)
1 + . . .+ ξ̃

(r)
N (11)

and
Pr = P{ξ > r}. (12)

It was proved in [11, 12] that (8) implies the following assertions.
Lemma 1. The following equality holds

P{η(N) ⩽ r} = (1− Pr)
N P{ζ(r)N ⩽ n}

P{ζN ⩽ n}
.

Lemma 2. The following equality holds

P{µr = k} =

(
N

k

)
pkr (1− pr)

N−k
P{ζ̃(r)N−k ⩽ n− kr}

P{ζN ⩽ n}
.

4 Auxiliary results

To estimate the behaviour of (1 − Pr)
N in Lemma 1 we need to consider the

asymptotics of NPr.
Lemma 3. Under the hypothesis of Theorem 1 NPr → γ.
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Proof. It follows from (1) that

Pr =

∞∑
i=1

h(r + i)

(r + i)τ
= h(r)

∞∑
i=1

h(r + i)

h(r)(r + i)τ
. (13)

It is proved in [9] (see also Lemma A.1.1 in [13]) that (4) implies

h(r + i)

h(r)
= 1 +O

((
1 +

i

r

)
1

φ(r)

)
. (14)

Obviously, r → ∞ (see (6)). Then

∞∑
i=1

1

(r + i)τ
∼
∫ ∞

1

dx

(r + x)τ
=

1

(τ − 1)rτ−1
. (15)

Similarly,

1

rφ(r)

∞∑
i=1

i

(r + i)τ
<

1

φ(r)

∫ ∞

r

dy

yτ−1
∼ 1

φ(r)(τ − 2)rτ−1
= o

( ∞∑
i=1

1

(r + i)τ

)
.

From this and (13) - (15) we get

Pr ∼ h(r)

(τ − 1)rτ−1
. (16)

Hence, the assertion of Lemma 3 follows from (6).
Let

mr = Eξ
(r)
1 , m̃r = Eξ̃

(r)
1 , σ2

r = Dξ
(r)
1 , σ̃2

r = Dξ̃
(r)
1 .

From (1), (8), (9) we have

mr =
m−

∑
k>r kpk

1− Pr
, σ2

r =
σ2 +m2 −

∑
k>r k

2pk

1− Pr
−m2

r,

m̃r =
m− rpr
1− pr

, σ̃2
r =

σ2

(1− pr)2

(
1− pr −

(m− r)2

σ2
pr

)
. (17)

Using the condition τ > 3 and (1) - (3), (17) we find that the first two moments
of distributions (1), (9), (10) are finite. Then, the central limit theorem can be
applied to the sums (11). The following assertions hold.

Lemma 4. Let N → ∞. Then, the distribution (ζN−Nm)/(σ
√
N) converges

weakly to the standard normal law.

Lemma 5. Let N → ∞. Then, the distribution (ζ
(r)
N −Nmr)/(σr

√
N) con-

verges weakly to the standard normal law.
Lemma 6. Let N → ∞. Then, the distribution (ζ̃N − Nm̃r)/(σ̃r

√
N) con-

verges weakly to the standard normal law.
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5 Proofs of Theorems 1 - 3

It is clear under the conditions of Theorem 1 that r → ∞. By analogy with (16),
it is not difficult to see that ∑

k>r

kpk = O

(
h(r)

rτ−2

)
. (18)

By (6),
h(r)

rτ−2
∼ γ(τ − 1)r

N
. (19)

It follows from (4), (6) that for sufficiently small δ > 0

r = O(N1/(τ−1−δ)).

Since τ > 3, we have r = o(
√
N). Thus, by virtue of (18), (19)∑
k>r

kpk = o

(
1√
N

)
. (20)

It therefore follows from (17) and Lemma 3 that

mr = m(1 + o(N−1/2)). (21)

Employing (1) and (2), we find that

r2pr → 0. (22)

We put

zN (n) =
n−Nm

σ
√
N

, z
(r)
N (n) =

n−Nmr

σr

√
N

, z̃
(r)
N (n) =

n−Nm̃r

σ̃r

√
N

. (23)

The relation (22) combined with (5), (17), (20), (21), (23) implies that under the

conditions of Theorem 1 the values of zN (n) and z
(r)
N (n) behave asymptotically

the same. Hence, from Lemmas 4, 5 we find that

P{ζ(r)N ⩽ n}
P{ζN ⩽ n}

= 1 + o(1).

Now the conclusion of Theorem 1 easily follows from these relations and Lemmas
1, 3.

Under the hypothesis of Theorem 2, k = Npr + ur

√
Npr(1− pr), and from

(23) we have

z̃
(r)
N−k(n− kr) =

n− kr − (N − k)m̃r

σ̃r

√
N

=
n−Nm

σ̃r

√
N

−
ur(r − m̃r)

√
pr(1− pr)

σ̃r
.

(24)
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From (1), (2), (23) and (24) we deduce the estimate

z
(r)
N−k(n− kr) = zN (n)

σ

σ̃r
+O(1).

Hence, using (7) we see that zN (n) and z
(r)
N−k(n − kr) simultaneously tend to

infinity, and from Lemmas 4, 6 we get

P{ζ̃(r)N−k ⩽ n− kr}
P{ζN ⩽ n}

→ 1. (25)

Using the normal approximation for a binomial distribution as Npr(1−pr) → ∞
we find that (

N

k

)
pkr (1− pr)

N−k =
1 + o(1)√

2πNpr(1− pr)
e−u2

r/2. (26)

Hence, the assertion of Theorem 2 follows from (25), (26) and from Lemma 2.
Theorem 3 is established in the same way as Theorem 2. It is clear that

pr → ∞. Note that the relation (24) remains valid for the values of k considered
in Theorem 3 if we replace ur with (k−Npr)/

√
Npr. Taking (5), (17), (22), (23)

into account, we obtain

z̃
(r)
n−k(n− kr) ∼ zN (n).

From this relation and from Lemmas 4, 6 we again come to (25). Theorem
3 follows from (25) and Lemma 2 considering that as for pr → ∞ binomial
probabilities admit the Poisson approximation:(

N

k

)
pkr (1− pr)

N−k ∼ (Npr)
k

k!
e−Npr .
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