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Abstract. We consider the upper confidence bound strategy for Gaus-
sian multi-armed bandits with known control horizon sizes N and build
its limiting description with a system of stochastic differential equations
and ordinary differential equations. Rewards for the arms are assumed
to have unknown expected values and known variances. A set of Monte-
Carlo simulations was performed for the case of close distributions of
rewards, when mean rewards differ by the magnitude of order N−1/2,
as it yields the highest normalized regret, to verify the validity of the
obtained description. The minimal size of the control horizon when the
normalized regret is not noticeably larger than maximum possible was
estimated.

Keywords: Gaussian multi-armed bandit · UCB · stochactic differential
equations · limiting description

1 Introduction

We consider a multi-armed bandit (MAB) problem. MAB can be viewed as
a slot machine with J arms. Each one of the arms can be selected for play,
which yields some random income (reward). It is suggested that a number of
times that a gambler can play is known beforehand. This number N is called
the control horizon size. Formally MAB is a controlled stochastic process ξ(n),
n = 1, 2, . . . , N . Value ξ(n) only depends on the chosen arm. Gambler’s task is
to maximize the total cumulative expected reward during the time of control.

MABs and corresponding algorithms are thoroughly analyzed in [13]. This is
a reinforcement learning problem that exemplifies the exploration–exploitation
tradeoff dilemma, so it is also studied in machine learning [1,3]. This problem
is also known as the problem of adaptive control in a random environment [15]
and the problem of expedient behavior [16]. MABs have also been used to model
problems such as managing research projects in a large organization like a science
foundation or a pharmaceutical company [9,2].
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Further we consider a Gaussian MAB, when rewards are normally distributed
with probability density functions

fl (x) = (2πDl)
−1/2

e
−
(x−ml)

2

2Dl , l = 1, 2, . . . , J.

We assume that mean rewards m1,m2, . . . ,mJ are unknown. In [11,6] it is
shown that incorrect values for variances only slightly affect overall rewards,
therefore they can be estimated during the initial steps of control. That is the
reason we assume that the variances of rewardsD1, D2, . . . , DJ are assumed to be
known. Therefore, the considered MAB can be described with vector parameter
θ = (m1, . . . ,mJ).

Gaussian MAB can be useful in a batch processing setting [14,4,10]. In that
scenario gambler can only change the choice of the arm after they have used
it for a given number of times (a batch). According to the central limit theo-
rem, the sum of rewards for a batch will have a normal distribution (if batch
size is relatively large) for a wide range of distributions of single-step rewards
(if variances of rewards are finite). Batch processing can be also performed in
parallel.

When some control strategy σ is used, the expected cumulative reward will
be lower than the maximally possible. That happens due to the fact that some
number of steps will be spent to explore the distributions of arms’ rewards.
Maximal cumulative reward would be obtained if the most lucrative arm was
known and used on every step of the control. The expected difference between
the maximal possible and the obtained rewards is called the regret and can be
expressed as

LN (σ, θ) = Eσ,θ

(
N∑

n=1

(max(m1, . . . ,mJ)− ξ(n))

)
.

Eσ,θ(·) denotes the expected value calculated with respect to measure gener-
ated by strategy σ and parameter θ. Therefore, the goal of control is to minimize
the regret.

Regret is dependent on the horizon size. To compare the strategies for dif-
ferent horizon sizes it is reasonable to consider the scaled regret

L̂N (σ, θ) = (DN)−1/2LN (σ, θ),

for D = maxJ DJ .
Single-step income on step n can be expressed as

ξ(n) = ml +
√

Dlηl,n,

where ηl,n is a standard normal random variable, and l = 1, 2, . . . , J , n =
1, 2, . . . , N .

Then cumulative reward for using l-th arm on step n can be expressed as

Xl(n) = nlml +
√
nlDlη,
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where
√
nlDlη is a normal random variable zero mean and variance nlDl which

we obtain when add up all of the rewards for the arm, nl is the number of times
the l-th arm was used, l = 1, 2, . . . , J ; n1 + . . .+ nJ = n.

UCB strategy (as described by Lai [12]) with the parameter a is defined as
selection of arm maximizing the value

Ul(n) =
Xl(n)

nl
+

√
aDl log(n/nl)√

nl
, l = 1, 2, . . . , J ;n = 1, 2, . . . , N.

Strategy prescribes to use each of the arms once in the beginning of control
to make the initial estimations regarding the mean rewards.

Presence of slowly growing term
√
2Dl log(n/nl)/nl ensures the necessity to

use every arm from time to time even if the estimated mean reward Xl(nl)/nl

from its usage so far was lower than from the other arms due to some reason. That
is the way the UCB strategy negotiates the exploration–exploitation dilemma:
the gambler strives to maximize his or her reward by using the arm with the
highest estimated mean, but also collects the information about the less explored
arms.

We aim to build a limiting description (with a system of stochastic differential
equations) of UCB strategy for a Gaussian multi-armed bandit when N → ∞.

2 System of stochastic differential equations to describe
UCB strategy for Gaussian two-armed bandit

First, we give a limiting description for the case of two-armed bandit.
In [5,7] an invariant description of a UCB strategy for a MAB was given.

Invariant description scales the control horizon to a unit size by scaling the step
number to smaller values (proportional to N). If N → ∞, then step value is
infinitely small.

Differentials of cumulative reward for using l-th arm can be expressed as

dXl = mldtl +
√
DldWl, l = 1, 2.

Here W1,W2 are independent Wiener processes, tl is a continuous variable
that corresponds to the usage ratio of each arm. Each of those equations cor-
respond to a Wiener process with a constant drift. At each moment only one
of values t1, t2 can be increased as only one of the arms is used. Therefore, we
consider two areas: in the first t1 increases with time t, in the second t2 increases.
We’ll use indicators I1 (t) , I2 (t) for convenience.

If the first arm is chosen, then{
dt1 = dt,

dt2 = 0,
and

{
I1(t) = 1,

I2(t) = 0.

If the second arm is chosen, then
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dt1 = 0,

dt2 = dt,
and

{
I1(t) = 0,

I2(t) = 1.

We’ll take notice that I2 (t) = 1 − I1 (t) and dt2 = dt − dt1. Also remember
that t2 = t− t1: one and only one arm is chosen at every moment.

Each of the areas is determined according to the chosen strategy. UCB rule
can be rewritten as

Ul (t, tl) =
Xl (t1)

tl
+

√
aDl log

t

tl√
tl

, l = 1, 2.

The area where the first arm is chosen will be defined by the condition
U1 (t, t1) > U2 (t, t2). Otherwise the second arm is chosen. To write this con-
dition formally we use the Heaviside step function H(·) notation. Its value is
zero for negative arguments and one for positive arguments.

For the UCB rule the indicator I1 (t) will be the function of arguments
t, t1, X1, X2:

I1 (t, t1, X1, X2) = H

X1

t1
+

√
aD1 log

t

t1√
t1

− X2

t− t1
−

√
aD2 log

t

t− t1√
t− t1

 .

Using this notation, we write the system of two Itô stochastic differential
equations and one ordinary differential equation equations to describe the UCB
strategy for Gaussian two-armed bandit as

dX1 = I1m1dt+
√
D1dW1,

dX2 = (1− I1)m2dt+
√
D2dW2,

dt1 = I1dt.

3 Simulation results

A series of Monte-Carlo simulations was performed to verify how the obtained
system of equations describes the behavior of the Gaussian two-armed bandit
when the UCB strategy is used. Without the loss of generality, we consider a
Gaussian two-armed bandit with the zero mean reward for the first arm m1 = 0.
We observe how the normalized regret depends on the value of the mean reward
for the second arm. Also, we assume D1 = D2 = D = 1: in [7] it is shown
that the maximum normalized regret is observed when the variances of the arm
rewards are equal. Also, we set a = 1.

Further we consider the case of “close” distributions of rewards as it is when
the highest values of regret are observed [17]. Its definitive feature is that the
difference of mean rewards has order N−1/2:{

ml = m+ cl
√
D/N ;m ∈ R, |cl| ≤ C < ∞, l = 1, 2

}
.
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Without the loss of generality we set c1 = 0.
For the Gaussian multi-armed bandit simulations, we consider the cases of

horizon sizes N = 200, 400. Figure 1 contains the plots of normalized regret vs
different values of c2. Data for the plots are averaged over 10000 simulations.
Figure 1 also shows the normalized regrets calculated for numerical solutions
of presented stochastic differential equations for different values of c2, averaged
over 10000 simulations. We used the Euler–Maruyama method with step sizes
of 10−3 and 5 · 10−4.

Fig. 1. Normalized regret for various differences of mean rewards (parameterized by c2)
obtained by Monte Carlo simulations and as solution of system of stochastic differential
equations

We see that normalized regret is about the same for different horizon sizes.
Also, the obtained system of equations gives the fitting description of the UCB
strategy. We note that maximal normalized regret (approximately 0.73) in these
simulations is observed when c2 ≈ 3.6.

Having the limiting description allows to answer the question at what horizon
size N the normalized regret will not be noticeably larger than found maximal
normalized regret. This question is of importance as the batch version of the
algorithm (reported in [5,7]) allows to vary the batch sizes. Parallel processing
is possible in that case, and it can result in shorter processing times.

Figure 2 shows maximum normalized regret (in domain of close distributions
of rewards) vs the control horizon size (left plot shows N ∈ [3, 100], right plot
shows N ∈ [36, 100]). Data is averaged over 10000 simulations.

We see that after N = 45 the normalized regret exceeds the value found via
the limiting description by no more than 2%. That means that for the batch
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Fig. 2. Maximum normalized regret vs the control horizon size N

processing (including parallel), the batch size may be chosen fairly large as long
as the number of processed batches stays small of moderate (i.e. 50 or more).

4 System of stochastic differential equations to describe
UCB strategy for Gaussian MAB

Further we obtain a limiting description with a system of stochastic differen-
tial equations for the UCB strategy for Gaussian multi-armed bandit with J
arms using the similar reasoning as before. Considered MAB has unknown mean
rewards m1, . . . ,mJ and known variances of rewards D1, . . . , DJ .

First, we express tJ as

tJ = t−
J−1∑
i=1

ti.

Indicator for the arm will be equal to one if the corresponding upper confi-
dence bound is greater than the confidence bounds for all other arms. We express
it as the product of step functions

Il(t, t1, . . . , tJ−1, X1, . . . , XJ) =

=

J∏
i=1
i̸=l

H

Xl

tl
+

√
aDl log

t

tl√
tl

− Xi

ti
−

√
aDi log

t

ti√
ti

,

for l = 1, . . . , J − 1.

IJ (t, t1, . . . , tJ−1, X1, . . . , XJ) = 1−
J−1∑
i=1

Ii (t, t1, . . . , tJ−1, X1, . . . , XJ).
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Then the system of J stochastic differential equations and J − 1 ordinary
differential equations that describes the UCB strategy takes form

dX1 = I1m1dt+
√
D1dW1,

. . .

dXJ−1 = IJ−1mJ−1dt+
√

DJ−1dWJ−1,

dXJ =
(
1−

∑J−1
i=1 Ii

)
mJdt+

√
DJdWJ ,

dt1 = I1dt,

. . .

dtJ−1 = IJ−1dt.

Presented system of equations also can be used to determine the horizon size
at which the normalized regret converges. That can be used as the number of
processed batches for the batch version of strategy, described in [5].

We consider a case of three-armed bandit as an example. We also consider
the case of close distribution of rewards, described in section 3. The highest
normalized regret is observed when c1 = c2 = 0 and c3 ≈ 4.5 [8]. This happens
as in this situation the strategy must distinguish between the best arm and two
competing arms with fairly similar but lower rewards. Simulations show that
the normalized regret converges at horizon size N = 70, i.e. is no more than 2%
greater than its value for larger horizon sizes.

5 Conclusion

We built and examined a limiting description (for horizon size N → ∞) with a
system of stochastic differential equations for the UCB strategy for the Gaussian
multi-armed bandit.

A series of Monte-Carlo simulations was performed to verify the validity of
obtained results for the case of two-armed bandit in the case of “close” dis-
tributions of rewards. Maximum normalized regret for the case N → ∞ was
determined. The minimal size of the control horizon when the normalized regret
is not noticeably larger than maximum possible was estimated.
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