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Abstract. We consider a two-armed bandit problem in relation to data
processing if there are two alternative processing methods with different
a priori unknown efficiencies. One has to determine the most efficient
method and ensure its preferential use. We consider batch data process-
ing when all the data is divided into batches. For the control, we present
the batch version of the UCB strategy which was first introduced by
P. Auer, N. Cesa-Bianchi and P. Fisher. We develop two approaches to
the invariant description of the control process on the horizon equal to
one. The first approach allows us to compute a regret using Monte-Carlo
simulations and the second approach provides the analytical formalism
for solving a recursive Bellman-type dynamic programming equation.
Numerical results show the high efficiency of the presented strategy.

Keywords: Gaussian two-armed bandit, UCB strategies, Bayesian and
minimax approaches, batch processing, Monte-Carlo simulations, dy-
namic programming.

1 Introduction

We consider a two-armed bandit problem (see., e.g., [1,2]). In what follows,
we consider a Gaussian two-armed bandit. Formally, it is a controlled random
process ξn, n = 1, 2, . . . , N , where N is a control horizon. Random variable ξn
depends only on currently chosen action yn and is normally distributed with a
density

fDℓ
(x|mℓ) = (2πDℓ)

−1/2
exp

(
− (x−mℓ)

2

2Dℓ

)
(1)

if yn = ℓ, ℓ = 1, 2. Variances D1, D2 are assumed to be known. We also as-
sume that D1 ≥ D2, otherwise, the variances can be renumbered. Note that
the assumption of a priori known variances can be removed later. Mathemati-
cal expectations m1,m2 are assumed to be unknown and are not ordered. This
two-armed bandit can be described by a parameter θ = (m1,m2) with the set of
possible values Θ, which will be defined below.
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Let us explain why Gaussian two-armed bandit is studied. We consider the
problem in application to batch data processing. Let ζn, n = 1, 2, . . . , N , be a
Bernoulli controlled random process described by the distribution

Pr(ζn = 1|yn = ℓ) = pℓ, Pr(ζn = 0|yn = ℓ) = qℓ, (2)

where pℓ + qℓ = 1, ℓ = 1, 2, n = 1, 2, . . . , N . The values of the process 1 and 0
correspond to successively and unsuccessively processed data number n, actions
correspond to alternative processing methods and the goal is to maximize the
mathematical expectation of the total number of successively processed data.
Assume that N = MK and divide all the data into K batches of M data in
each. Let us use the same methods to all the data in each batch and cumulative
(or total) incomes in batches use for the control. If the sizes of batches are large
enough then according to the central limit theorem distributions of cumulative
incomes are close to Gaussian. The main property of this approach is that max-
imal expected loss of the total income corresponding to batch data processing
is approximately the same as that corresponding to the optimal processing data
one by one if the number of batches is large enough (see, e.g., [3,4]).

Note that initially batch processing was considered in application to treat-
ment of patients with alternative methods. In this case, all the patients are
divided into a number of groups: comparatively small test groups to which all
the treatments are applied at the initial stage and a large remaining group to
which the single treatment is applied that showed the most efficiency at the
initial stage (see, e.g., [5,6]).

A strategy σ determines the choice of the action yn+1 using available infor-
mation up to the point of time n. Below we consider a customization of the UCB
strategy proposed in [7]. This strategy prescribes to apply all the actions once
at the start of the control and then at each instant of time n+ 1 to choose the
action corresponding to the maximum of the values

Qℓ(n) =
Xℓ(n)

nℓ
+

(
2 ln(n)

nℓ

)1/2

, (3)

where ℓ = 1, 2; n = 2, . . . , N − 1. Here nℓ, Xℓ(n), ℓ = 1, 2, are current cumula-
tive counts of both actions’ applications and corresponding cumulative incomes.
Strategies like this are called UCB (Upper Confidence Bound) rules, they were
considered, e.g., in [8,9,10,11].

Let us define the goal of the control. If the parameter θ = (m1,m2) were
known, then the optimal strategy would always be to use the action correspond-
ing to the maximum ofm1,m2, the mathematical expectation of the total income
is thus N max (m1,m2). If the strategy σ is applied, the total expected income
is less than the maximal one by the value

LN (σ, θ) = N max(m1,m2)−Eσ,θ

(
N∑

n=1

ξn

)
, (4)
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which is called the regret. Here Eσ,θ denotes mathematical expectation computed
over the measure generated by strategy σ and parameter θ. Let

RM
N (Θ) = inf

{σ}
sup
Θ

LN (σ, θ) (5)

be the minimax risk computed by the regret (4) on the set of parameters Θ
for considered strategies. Corresponding strategy σM , if it exists, is called the
minimax strategy.

The structure of the paper is as follows. In Section 2, we define a batch version
of the strategy (3) and obtain its invariant description on the control horizon
equal to one. These results allow us to compute the regret by Monte-Carlo sim-
ulations. In Section 3, we consider another approach to invariant description
which allows us to compute the regret as a solution to the recursive integro-
difference equation. Note that invariant descriptions are valid in the domain of
“close” distributions where all mathematical expectations of one-step incomes
differ by the values of the order of N−1/2. Precisely in this domain the regret
attains its maximum values. In Section 4, we present numerical results. These
results show the high effectiveness of the proposed strategy. For example, in the
case of 50 batches it ensures the maximum normalized regret 0.71. As this max-
imum regret can not be less than approximately 0.637 (see, [4]), this is seen as
a good indicator, especially, since the strategy is simple. In Section 4, we also
show that small deviations in the variances in the UCB rule do not affect a regret
significantly. This allows one to make the estimates of unknown variances at the
initial stage, when actions are used by turn, and then to use these estimates on
the remaining control horizon. Section 5 contains a conclusion.

2 Invariant Description of the Control

The strategy (3) was proposed in [7] for multi-armed bandits which incomes
belong to the segment [0, 1]. Let us consider its customization to the case of a
Gaussian two-armed bandit. Denote D = D1 = max(D1, D2) and γℓ = Dℓ/D,
ℓ = 1, 2. Let us define modified upper confidence bounds (3) as follows:

Qℓ(n) =
Xℓ(n)

nℓ
+ aℓ(γ1, γ2)

(
Dℓ ln(n)

nℓ

)1/2

, ℓ = 1, 2, (6)

where aℓ(γ1, γ2) > 0, 1 = γ1 ≥ γ2. Factors (Dℓ/nℓ)
1/2 characterize the widths of

confidence intervals. Functions a1(γ1, γ2), a2(γ1, γ2) describe parameters of the
UCB strategy, which can be used for ensuring minimax goal of the control (5).
Clearly, a1(γ1, γ2) = a2(γ1, γ2) = a if γ1 = γ2 = 1 because equal variances can
be arbitrarily ordered.

Let us move on to the invariant description of the control. Consider the set
of parameters Θ = {θ = (m1,m2)}, where

mℓ = m+ dℓ(D/N)1/2; m ∈ (−∞,+∞), |dℓ| ≤ c, ℓ = 1, 2, (7)
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where c > 0 is large enough fixed magnitude. This set of parameters describes
“close” distributions, on which the regret attains its maximum values having the
order of N1/2 [12]. For “distant” distributions the order of the regret is different.
For example, it is ln(N) asymptotically as N → ∞ if |m1 − m2| ≥ δ > 0. In
more detail “close” and “distant” distributions are discussed in [3,4].

In the sequel, we consider strategies which can change actions only after they
have been used M times in succession. These strategies allow one to implement
batch processing of data. Let us assume that N = MK, where K is the number
of batches. For batch processing upper confident bounds are as follows

Q̂ℓ(k) =
X̂ℓ(k)

kℓ
+ aℓ(γ1, γ2)

(
MDℓ ln(k)

kℓ

)1/2

, ℓ = 1, 2, (8)

where k is the cumulative number of processed batches, kℓ is the number of
batches to which the ℓth action was applied, X̂ℓ(k) is the cumulative income
corresponding to application of ℓth action after processing k batches (k =
2, . . . ,K − 1). Let us denote by

Iℓ(k) =

{
1, if Q̂ℓ(k − 1) = max

(
Q̂1(k − 1), Q̂2(k − 1)

)
,

0, otherwise,

an indicator function of chosen action while processing the kth batch according
to considered rule if k > 2. Note that with probability 1 at each k only one Iℓ(k)
is equal to 1. If k ≤ 2 then each action is applied to precisely one batch and we
can put Iℓ(k) = δℓk, where δℓk is Kronecker symbol. The cumulative income for
each action application is

X̂ℓ(k) = kℓM(m+ dℓ(D/N)1/2) +

k∑
i=1

Iℓ(i)ηℓ(MDℓ; i), (9)

where ηℓ(MDℓ; i) ∼ N (0,
√
MDℓ) are independent normally distributed random

variables with zero mathematical expectation and variance MDℓ. Denote t =
kK−1, tℓ = kℓK

−1, ε = K−1. Note that t1, t2, t describe the relative usage times
of actions computed with respect to the control horizon N , ε = K−1 = M/N
is a relative size of the batch. Taking into account (9), let us present upper
confidence bounds (8) as

Q̂ℓ(k) = Mm+

(
MD

K

)1/2

(10)

×

(
dℓ +

∑k
i=1 Iℓ(i)ηℓ(γℓε; i)

tℓ
+ aℓ(γ1, γ2)

(
γℓ ln(tε

−1)

tℓ

)1/2
)
, ℓ = 1, 2.

Next, let us apply the following linear transformation to bounds (10), which does
not affect their order:

q̂ℓ(t) = (Q̂ℓ(k)−Mm)

(
K

MD

)1/2

.
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As a result, we obtain the expressions for upper confident bounds of the UCB
strategy with a control horizon equal to one, i.e., in invariant form depending
on the relative size of the batch ε rather than on the magnitude of horizon N :

q̂ℓ(t) = dℓ +

∑k
i=1 Iℓ(i)ηℓ(γℓε; i)

tℓ
+ aℓ(γ1, γ2)

(
γℓ ln(tε

−1)

tℓ

)1/2

, (11)

ℓ = 1, 2, where d1, d2 are determined according to (7). Now let us obtain the
expression for the regret (4) in invariant form. Let us put dl0 = max(d1, d2).
Then using (7) we obtain

LN (σ, θ) =

2∑
ℓ=1

(ml0 −mℓ)Eσ,θ

(
K∑
i=1

MIℓ(i)

)

= (D/N)1/2
2∑

ℓ=1

M(dl0 − dℓ)Eσ,θ (kℓ) = (DN)1/2
2∑

ℓ=1

(dl0 − dℓ)Eσ,θ(tℓ).

Therefore, the following normalized (with respect to (DN)1/2) expression can
be obtained for the regret

(DN)−1/2LN (σ, θ) =

2∑
ℓ=1

(dl0 − dℓ)Eσ,θ(tℓ). (12)

The results can be stated as a theorem.

Theorem 1. For a Gaussian two-armed bandit with fixed a priory known vari-
ances D1, D2 and unknown mathematical expectations m1,m2 belonging to the
set of parameters (7), the batch version of UCB strategy with upper confidence
bounds (8) has invariant description with upper confidence bounds (11). Nor-
malized (with respect to the value (DN)1/2) regret (4) is described by (12).

3 Another Approach to Invariant Description

In this section, we consider another approach to invariant description, which
uses the results of [13]. Let us introduce a prior distribution density λ(θ) and
consider the averaged regret

LN (σ, λ) =

∫
Θ

LN (σ, θ)λ(θ)dθ, (13)

where LN (σ, θ) is defined in (4). It is convenient to present upper confidence
bounds as

Qℓ(Xℓ, nℓ) =
Xℓ

nℓ
+ aℓ(γ1, γ2)

(
Dℓ ln(n)

nℓ

)1/2

, (14)
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where nℓ, Xℓ are current cumulative number of the usage of the ℓth action and
corresponding cumulative income, γℓ = Dℓ/D1, ℓ = 1, 2. Let us use a notation
n∗
ℓ = nℓDℓ. Given a history of the process X1, n1, X2, n2, the posterior distribu-

tion density is

λ(m1,m2|X1, n1, X2, n2) (15)

=
fn∗

1
(X1|n1m1)fn∗

2
(X2|n2m2)λ(m1,m2)

p(λ;X1, n1, X2, n2)

with

p(λ;X1, n1, X2, n2) (16)

=

∫∫
Θ

fn∗
1
(X1|n1m1)fn∗

2
(X2|n2m2)λ(m1,m2)dm1dm2.

We again assume that processing is implemented inK stages by batches ofM
data, and the first two batches are processed using both actions by turn. So, N =
KM . Given the history of the processX1, n1, X2, n2, a strategy σ describes prob-
abilities of choosing the ℓth action at the time interval n+1, . . . , n+M , i.e., con-
sists of probabilities σℓ(X1, n1, X2, n2) = Pr(yn+ν = ℓ|X1, n1, X2, n2), where n =
n1+n2 = kM, k = 2, . . . ,K−1, ν = 1, . . . ,M . Denote by LN−n(λ;X1, n1, X2, n2)
a regret on the remaining control horizon N − n computed with respect to the
posterior distribution density (15) (n = n1 + n2). Then for computing a regret
(13) one has to solve the following recursive equation

LN−n(λ;X1, n1, X2, n2) = σ1(X1, n1, X2, n2)L
(1)
N−n(λ;X1, n1, X2, n2)

+σ2(X1, n1, X2, n2)L
(2)
N−n(λ;X1, n1, X2, n2), (17)

where L
(1)
N−n(λ;X1, n1, X2, n2) = L

(2)
N−n(λ;X1, n1, X2, n2) = 0 if n = N and

L
(1)
N−n(λ;X1, n1, X2, n2) =

∫∫
Θ

λ(m1,m2|X1, n1, X2, n2)

×
(
M(m2 −m1)

+ +E(1)
x LN−n−M (λ;X1 + x, n1 +M,X2, n2)

)
dm1dm2,

L
(2)
N−n(λ;X1, n1, X2, n2) =

∫∫
Θ

λ(m1,m2|X1, n1, X2, n2) (18)

×
(
M(m1 −m2)

+ +E(2)
x LN−n−M (λ;X1, n1, X2 + x, n2 +M)

)
dm1dm2

if 2M ≤ n < N . Here x+ = max(x, 0) and

E(ℓ)
x L(x) =

∫ ∞

−∞
L(x)fMDℓ

(x|Mmℓ)dx

denotes mathematical expectation with respect to the probability density de-
scribing the application of the ℓth action to the batch of data (ℓ = 1, 2). One
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can see that L
(ℓ)
N−n(λ;X1, n1, X2, n2) is a mathematical expectation of the loss

of cumulative income on the remaining control horizon N − n if the ℓth action
is applied to the first batch and then a control is implemented according to the
strategy σ. UCB strategy is described as follows

σ1(X1, n1, X2, n2) =

{
1, if Q1(X1, n1) > Q2(X2, n2),
0, if Q1(X1, n1) < Q2(X2, n2),

(19)

σ2(X1, n1, X2, n2) = 1− σ1(X1, n1, X2, n2). Probabilities σ1(X1, n1, X2, n2),
σ2(X1, n1, X2, n2) can be arbitrarily chosen if Q1(X1, n1, s1) = Q2(X2, n2, s2).
A regret (13) is

LN (σ, λ) =

∫∫
Θ

M |m1 −m2|λ(m1,m2)dm1dm2 (20)

+

∫ ∞

−∞

∫ ∞

−∞
LN−2M (λ;X1,M,X2,M)p(λ;X1,M,X2,M)dX1dX2,

where p(λ;X1,M,X2,M) is defined in (16). The first term in (20) describes the
loss of income at the initial stage of the control when actions are applied by turn.
The second term describes the loss of income at the remaining horizon. Note that
if one has to determine a regret (4) then a degenerate prior distribution density,
concentrated at a single parameter θ, should be chosen. In this case, all the
posterior distribution densities will be degenerate, too.

Formulas (17)–(20), in principle, allow one to compute a regret but require
a very large amount of computations. One can drastically reduce the amount of
computations using the following properties of the UCB strategy.

Lemma 1. Let the strategy σ be such that

σℓ(X1, n1, X2, n2) = σℓ(X1 + n1z, n1, X2 + n2z, n2) (21)

for all histories X1, n1, X2, n2, ℓ = 1, 2, and for some fixed z. Then the following
equality holds true

LN (σ, λ(m1,m2)) = LN (σ, λ(m1 + z,m2 + z)). (22)

Lemma 2. Put ℓ = 3− ℓ. Let the strategy σ be such that

σℓ(X1, n1, X2, n2) = σℓ(X2, n2, X1, n1), (23)

for all histories X1, n1, X2, n2 and ℓ = 1, 2. If D1 = D2 then the following
equality holds true

LN (σ, λ(m1,m2)) = LN (σ, λ(m2,m1)). (24)

Lemma 3. A strategy σ defined by (14) satisfies (21) and (23) and for all n1, n2

depends only on current statistics (U, n1, n2), where U = (X1n2 − X2n1)/n
′,

n′ = n′
1 + n′

2, n
′
1 = n1/D1, n

′
2 = n2/D2. For fixed n1, n2 function σ1(U, n1, n2)

monotonously increases in U .
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To prove lemmas 1, 2, one has to use formulas (17)–(20). These proofs are
similar to those presented in [14]. Lemma 3 follows from (14) and (19). For
further it is convenient to change parametrization as follows: m1 = m+ v, m2 =
m−v. Denote by µ(m, v) a prior distribution density in the new variables. Then
for strategies satisfying a condition of lemma 1 the equality LN (σ, µ(m, v)) =
LN (σ, µ(m+z, v)) holds true for any fixed z. For strategies satisfying a condition
of lemma 2 the equality LN (σ, µ(m, v)) = LN (σ, µ(m,−v)) holds true if D1 =
D2.

Let us consider distribution density µ(m, v) = ρ(v)β(m), where β(m) is an
arbitrary density. Clearly, if σ is defined by (14) then the equality holds

LN (σ, ρ(v)β(m)) =

∫ ∞

−∞
LN (σ, ρ(v)δ(m− z))β(z)dz (25)

where δ(m − z) is a Dirac delta function. Since, according to lemmas 1 and
3, all LN (σ, ρ(v)δ(m − z)) are equal to each other, it follows from (25) that
LN (σ, ρ(v)β1(m)) = LN (σ, ρ(v)β2(m)) = LN (σ, ρ(v)) for all β1(m), β2(m). Here
a notation LN (σ, ρ(v)) emphasizes that a regret is determined only by a density
ρ(v). In what follows, we choose a prior distribution density in the form

µ(m, v) = ρ(v)κa(m), (26)

where κa(m) is a uniform density on the segment m ∈ [−a, a] and a is large
enough.

For strategies {σℓ(U, n1, n2)} and a prior distribution density (26), provided
that a → +∞, in [13], theorem 5, a recursive dynamic programming equation is
obtained in invariant form with a control horizon equal to one in the domain of
“close” distributions. This equation uses much less calculations than (17)–(18).
Let us present this equation. We need the following change of variables

C = cN−1/2, w = N1/2v, ϱ(w) = N−1/2ρ(v),
xℓ = XℓN

−1/2, u = UN−1/2,
tℓ = nℓN

−1, t∗ℓ = n∗
ℓN

−1, t′ℓ = n′
ℓN

−1, t = t1 + t2, t
′ = t′1 + t′2,

ε = MN−1, ε∗ℓ = εDℓ, ε′ℓ = ε/Dℓ, ℓ = 1, 2.

It follows from (19) that σℓ(X1, n1, X2, n2) = σℓ(x1, t1, x2, t2) for all histories
(X1, n1, X2, n2) and ℓ = 1, 2. Therefore, σℓ(U, n1, n2) = σℓ(u, t1, t2) for all his-
tories (U, n1, n2) and ℓ = 1, 2. Let us put D2

g = D1D2, D
−1
h = 0.5(D−1

1 +D−1
2 ),

fD(x) = fD(x|0) and use a standard notation for convolution of functions
F (x) ∗ G(x) =

∫∞
−∞ F (x − y)G(y)dy. The following equation must be solved

recursively

lε(u, t1, t2) = σ1(u, t1, t2)l
(1)
ε (u, t1, t2) + σ2(u, t1, t2)l

(2)
ε (u, t1, t2), (27)

backwards where l
(1)
ε (u, t1, t2) = l

(2)
ε (u, t1, t2) = 0 if t1 + t2 = 1 and then

l
(1)
ε (u, t1, t2) = εg(1)(u, t1, t2)
+lε(u, t1 + ε, t2) ∗ fε∗1t22(t′)−1(t′+ε′1)

−1(u),

l
(2)
ε (u, t1, t2) = εg(2)(u, t1, t2)
+lε(u, t1, t2 + ε) ∗ fε∗2t21(t′)−1(t′+ε′2)

−1(u),

(28)
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if t1 + t2 < 1, t1 ≥ ε and t2 ≥ ε. A regret (13) is

LN (σ; ρ(v)) = N1/2lε(σ; ϱ(w)), where (29)

lε(σ; ϱ(w)) = ε

∫ c

−c

2|w|ϱ(w)dw +

∫ ∞

−∞
f0.5εD2

gDh
(u)lε(u, ε, ε)du.

Here

g(1)(u, t1, t2) =

∫ 0

−c

2|w|g(w;u, t1, t2)ϱ(w)dw,

g(2)(u, t1, t2) =

∫ c

0

2wg(w;u, t1, t2)ϱ(w)dw,

g(w;u, t1, t2) = exp
(
2D−2

g (uw − w2t1t2(t
′)−1)

)
.

Note that ε characterizes relative sizes of batches.

4 Numerical Results

In this section, we present some numerical results. In figure 1, we present nor-
malized regrets for different control horizons. Thick solid lines 1, 2, 3 correspond
to normalized regrets

lN (σ, θ) = (DN)−1/2LN (σ, θ)

computed on the control horizons N = 50, 250, 1000. Thin dotted lines 4, 5, 6
correspond to normalized regrets on the same control horizonsN = 50, 250, 1000
but computed without initial stage of the control when actions are applied by
turn. Here θ = (d(D/N)1/2,−d(D/N)1/2) with D = 1 a common variance. The
step of changing d was always 0.3 from 0 to 7.5. Lines 1 and 4 were computed
by both Monte-Carlo simulations (averaged over 400000 simulations) and ana-
lytically using recursive equation. Computed by these two methods lines turned
out to be very close and visually coincide. However, the speed of the methods
varies greatly. Monte-Carlo simulations were about 38 times faster. Since the
operating time of Monte-Carlo simulations is approximately proportional to N
and operating time of analytic method is approximately proportional to N2, the
difference in operating times of two methods grows significantly with growing N .
That is why all other computations were performed using 400000 Monte-Carlo
simulations.

In table 1, approximate values of the parameters of the optimal strategy for
control horizons N = 50, 250, 1000 are presented. Here a∗ are optimal values
of a and d∗ correspond to d at which normalized regrets attain their maximum
values

rMN (Θ) = (DN)−1/2 max
θ

LN (σ, θ),

which are equal to normalized minimax risks (5). Note that the strategy is not
very sensitive to the varying of a in the vicinity of a∗. If a changes by 0.1 then
maximum of the regret changes approximately by 0.01.
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Fig. 1. Normalized regrets for different control horizons N = 50, 250, 1000.
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Fig. 2. Effect on the regret of inaccurate values of variances in the strategy.

Table 1. Parameters of the strategy.

N a∗ d∗ rMN (Θ)

50 0.94 1.8 0.71
250 1.0 2.1 0.69
1000 1.0 2.1 0.64
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Fig. 3. Normalized regrets in the case of different variances, N = 50.

In figure 2, we present an effect on the regret of using inaccurate values of
variances in the bounds (8) if D1 = D2 = 1 and N = 250. Thick solid line
corresponds to the case of accurately indicated variances, i.e., γ1 = γ2 = 1.
Thin dotted lines 1 and 2 correspond to the cases of γ1 = 0.95, γ2 = 1.05 and
γ1 = 1.05, γ2 = 0.95 respectively. Thin dotted lines corresponding to the cases
γ1 = γ2 = 0.95 and γ1 = γ2 = 1.05 are also presented in figure 2 but they almost
coincide with the thick solid line. If sizes of batches are large enough, this means
that estimates of the variances can be made at the initial stage, when actions
are applied by turn, and then used for the control.
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Fig. 4. Normalized regrets for batch processing of Bernoulli incomes.
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Table 2. Parameters of the strategy in the case of different variances, N = 50.

γ2 a∗
1 d∗1 a∗

2 d∗2 rMN (Θ)

1 0.94 1.8 0.94 -1.8 0.71
0.75 0.90 1.8 0.95 -1.5 0.66
0.5 0.88 1.5 1.01 -1.5 0.61

In figure 3, we present the normalized regrets in the case of different variances
and N = 50. Lines 1, 2, 3 correspond to γ2 = 1, 0.75, 0.5 respectively. Approx-
imate values of the parameters of the optimal UCB strategy are presented in
table 2.

Finally, in figure 4, we present normalized regrets for Bernoulli incomes de-
scribed by probability distribution (2). Here total number of data is N = 5000,
batch size is M = 100, and, therefore, the number of control stages is K = 50.
Parameter is as follows

θ = (p1, p2) =
(
p+ d(D/N)1/2, p− d(D/N)1/2

)
,

where D = 0.25 is the maximum variance of one-step income attained at p = 0.5.
In figure 4, a thick solid line 1 corresponds to the case of p = 0.5, this line is
visually identical with line 1 in figure 1. Thin solid and dotted lines correspond
to the cases of p = 0.25 and p = 0.75, which have equal variances. This lines are
almost the same and provide less maximum regret than line 1. For all different
p maximum regrets do not exceed that attained at p = 0.5.

5 Conclusion

We considered a batch version of a UCB strategy for controlling a Gaussian
two-armed bandit and developed two approaches to invariant description of the
control on the horizon equal to one. The first approach allows one to compute
a regret using Monte-Carlo simulations. The second approach provides analyti-
cal method to determine a regret by solving a recursive Bellman-type dynamic
programming equation. Although both approaches give the same results, Monte-
Carlo simulations are much faster. Using Monte-Carlo simulations, we obtained
optimal parameters of the UCB strategy which allow one to minimize the maxi-
mum regret, i.e., to ensure the minimax goal of the control for considered strate-
gies. The results show the high effectiveness of considered UCB strategy.
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