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Abstract. We consider the so-called N -model which contains two pools
of servers and two classes of external customers following independent
Poisson inputs. Service times are class-depend and, in each pool, are
i.i.d. Pool 1 consists of N1 servers and pool 2 consists of one server.
When all servers of pool 1 are occupied, and there are waiting customers
in the queue of pool 1, then a class-1 customer jumps to server of pool 2,
becoming a class-(1,2) customer. We consider a non-preemptive service
priority: a class-(1,2) customer starts service in the server of pool 2,
when an ongoing customer service, if any, is completed. The purpose
of the research is to deduce explicit stationary distribution of number
of customers at the 1st pool, and to verify stability conditions of the
model. Moreover, we simulate a model with one server in the 1st pool,
N1 = 1, in which class-1 customers jump to pool 2 provided the queue
at pool 1 exceeds a positive threshold C. In this setting we verify by
simulation that (i) for each fixed C, the stationary idle probability P0 of
server 1 attains minimum when the 2nd server is always busy with class-
2 customers (saturated regime) and (ii) P0 decreases as the threshold C

increases.

Keywords: two-poolN -model, stability, stationary distribution, non-preemptive
priority, monotonicity, simulation

1 Introduction

This work continues the study of the so-called N -model considered earlier in [4],
and which, in turn, is a variation of the model studied in [8]. This model belongs
to a class of network models with so-called Skills-Based Routing which describes
the routing of customers. This routing can be dynamic, depending on the state
of the system. In the opposite case, this routing is predefined in advance, say
by assignment of the servers among customers depending on their priority. The
latter routing is called static. The design of Skills-Based Routing is an actual and
challenging problem. A multi-server pool is equivalent to multiple equally-skilled
single servers, see for instance, [3,9].
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For instance, N -model means that in the two-pool system, each server of
the 1st pool serves only the customers of class-1 customers, while each server
of the 2nd pool can serve both class-1 and class-2 customers. In this model,
there are two independent Poisson inputs of class-i customers, where class-i
customers join the queue or occupy the available server of pool i = 1, 2. At
that, a class-1 customer meeting all servers in pool 1 busy (or when queue-size
in pool 1 exceeds a threshold C > 0) jumps to pool 2 to be served as a class-
(1,2) customer with preemptive-resume priority over class-2 customers, if any.
As it is mentioned above, such a model is called N -model with static priority
in [8]. This model has been also studied in [5] where stability conditions of each
pool and both pools are found. However, stability conditions of the 2nd pool
and the entire system contain an unknown parameter which in general depends
on distributions of service times in both pools (and also on the input rates
and threshold C). Motivation of this N -model can be found in [8,9,10,5,4]. In
particular, servers of pool 1 can be treated as beneficiary, while the server of pool
2 can be called donor. These models constitute a wide class of the systems with
interacting servers. This feature makes analytic investigation of such systems
highly difficult. Also models under study belong to systems with flexible servers.
Alternatively, to describe them one can use term cross-trained servers [1,2,6,7].
In these systems, some servers can serve a limited set of classes of customers,
while remaining servers accept a broader set of classes of customers.

In some situation, service capacity may be transferred between servers for
optimization of service process. Also one of possible applications of the model
is the so-called cognitive radio, where a dynamic management is applied for
using the best wireless channels in its neighborhood to avoid congestion. Such
a radio can detect currently unused frequency bands and switch between such
free channels without interruption of data transmission.

The contribution of this work is as follows. First of all, for exponential service
times, that is for pure Markovian model, we construct Kolmogorov equations
and derive the stationary distribution of the number of customers in the 1st
pool with N1 ≥ 1 servers, provided the 2nd pool (server) is always busy by class-
2 customers. We call this system saturated. Moreover, using approach from [11],
we prove the following intuitive continuity property of the model: if the queue
size in pool 2 increases (in probability) then the stationary distribution of the
1st pool approaches the corresponding stationary distribution of the 1st pool
with initially saturated pool 2. Evidently, each class-1 customer, before jumping
to pool 2, must wait a time until class-2 customer, being served, departs server.
(We recall that class-1 customers have non-preemptive priority.) It indicates that
the stationary idle probability P0 of the 1st pool (that is the probability that
all N1 servers are idle) must attained minimum in the saturated system. In this
work we verify this property by simulation for the system with threshold C > 0,
and it is another contribution of the research. (In previous paper [4] we studied
the system in which C = 0.) Finally, we verify by simulation that the probability
P0 decreases as the threshold C increases.
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The paper is organized as follows. We describe the model in Section 2. Sec-
tion 3 contains the main mentioned above theoretical results: solution of Kol-
mogorov equations and the proof of convergence queue-size distribution in pool 1
to distribution for the model with saturated pool 2. Section 4 contains simulation
results.

2 Description of the model

We study a Markovian queueing model containing two pools of servers with
infinite-capacity buffers. The 1st pool consists of N1 servers working in parallel,
while the 2nd pool contains only one server. Thus the first pool is a N1-server
queueing system, while the second pool is a single-server system. It is worth
mentioning that even in this relatively simple setting the analytic solution is
available only in a special case, when service rate of class-(1,2) customers equals
the service rate of class-2 customers.

The choice of such configuration of the pools is also caused by the following
reason: in this case we are able to solve the corresponding Kolmogorov equations
to find stationary distribution of the state of the first pool explicitly.

It is assumed that pool i is fed by a Poisson input with rate λi, i = 1, 2.
Class-1 customers can be served in both pools, while class-2 customers can be
accommodated by pool 2 only. Moreover, provided the number of waiting in the
queue (in pool 1) class-1 customers exceeds a given threshold C, an arbitrary
class-1 customer waiting in the 1st queue, can jump to pool 2, becoming class-
(1,2) customer, where it has non-preemptive priority over class-2 customers.
That is, the jumped customer starts service after the customer being served (if
any) leaves the server of pool 2. We stress that at most one class-(1,2) customer
can be in pool 2 simultaneously.

We assume that the service times of class-i customers {S
(i)
k

, k ≥ 1} are
independent, exponential with rate µi = 1/ES(i) ∈ (0, ∞), i = 1, 2, (1, 2). (In
what follows, we omit the serial index to denote a generic element of an i.i.d
sequence.) All sequences are assumed to be independent.

We denote Qi(t) the summary number of customers (including waiting in
the queue) in pool i at instant t−, i = 1, 2. We assume an arbitrary work-

conserving service discipline in each pool, in particular, an arbitrary waiting

class-1 customer may jump to the server of pool 2, provided Q1(t) > N1 + C
and pool 2 is idle, because performance analysis and stability/instability does
not depend on the order of customers, which (in each class) are stochastically
undistinguishable.

3 Theoretical results

In this section, we deduce explicit formulas for the 1st pool stationary proba-
bilities. Then we formulate and verify a condition implying convergence of the
queue-size distribution in original pool 1 with increasing class-2 customers to
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stationary distribution of the 1st pool with initially saturated (by class-2 cus-
tomers) pool 2.

A key assumption is that µ12 = µ2, in which case class-2 and class-(1,2) cus-
tomers are indistinguishable. As a result the one-dimensional process Q1(t), t ≥
0, turns out to be Markov, provided Q2(t) = ∞.

Recall that the 1st pool consists of N1 servers and the 2nd pool contains only
one server. It is easy to verify that service rate of class-1 customers, at instant
t, is defined as

µ1(t) =

N1∑

k=0

P(Q2(t) > 0, Q1(t) = k)(µ1k + µ2)

+ P(Q2(t) > 0, Q1(t) > N1)(µ1N1 + µ2)

+

N1∑

k=0

P(Q2(t) = 0, Q1(t) = k)µ1k. (1)

Our main assumption is that the 2nd pool approaches saturated regime, that is
the queue size in the 2nd pool increases unlimitedly in distribution:

Q2(t) ⇒ ∞, t → ∞. (2)

Then it easily follows that, as t → ∞,

N1∑

k=0

P(Q2(t) = 0, Q1(t) = k) → 0, (3)

P(Q2(t) > 0, Q1(t) > N1) → P(Q1 > N1) =: P>N1
, (4)

P(Q2(t) > 0, Q1(t) = k) → P(Q1 = k) =: Pk, k ≥ 0. (5)

In particular,

N1∑

k=0

P(Q2(t) > 0, Q1(t) = k) →

N1∑

k=0

Pk. (6)

Now relations (3)-(6) imply that, as t → ∞,

µ1(t) →

N1∑

k=0

Pk(µ1k + µ2) + P>N1
(µ1N1 + µ2) =: µ. (7)

Now we construct Kolmogorov equations for the stationary probabilities of the
state of the 1st queue, provided the 2nd queue is overloaded. Introduce traffic
intensities

ρ1 =
λ1

µ1

,

and, for k = 2, . . . , N1,

ρk =
λ

kµ1 + µ2

.
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It is easy to check that the following balance relations for stationary distribution
of the process {Q1(t)} hold true:

λ1P0 = µ1P1,

and, for k = 1, . . . , N1 − 1,

λ1Pk = ((k + 1)µ1 + µ2)Pk+1,

implying

Pk+1 =
k+1∏

1

ρiP0. (8)

At the same time,

λ1PN1
= (N1µ1 + µ2)PN1+1,

and we obtain

PN1+1 =

N1∏

1

ρiρN1
P0. (9)

Further analysis shows that

λ1PN1+k = (N1µ1 + µ2)PN1+k+1,

and finally we obtain

PN1+k+1 =

N1∏

1

ρi[ρN1
]k+1

P0. (10)

Using normalization condition
∑

∞

k=0
Pk = 1, we obtain

1 = P0 + P0

N1∑

l=1

l∏

i=1

ρi + P0

∞∑

k=1

N1∏

i=1

ρi[ρN1
]k. (11)

It gives the following explicit expression for P0:

P0 =
1

1 +
∑N1

l=1

l∏
i=1

ρi +
N1∏
i=1

ρi
ρN1

1−ρN1

, (12)

where, recall,

ρN1
=

λ1

N1µ1 + µ2

. (13)
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Thus, the stationary probabilities Pk in (7) satisfy relations (8)-(13).
Our next goal is to show the following intuitive continuity result, which how-

ever needs to be strongly proved below. It is expected that, under main assump-
tion (2), the distribution of the process {Q1(t)} converges to stationary distri-
bution which corresponds to initially overloaded pool 2, by class-2 customers,
that is Q(0) = ∞ with probability 1.

First of all we note that it has been proved in [5] that the 1st pool is stationary
if the following sufficient condition holds:

µ1N1 + µ2 − λ1

λ1

> 0. (14)

Note, that this condition guarantees stability of the 1st pool regardless of the
threshold C, when class-1 customers may jump to pool 2. The strong proof
of the mentioned continuity property is based on a condition from [11] which
is formulated below for the birth-and-death process {Q1(t), t ≥ 0} with birth
(input) rates λ(k) and death (service) rates µ(k), where k is the current state of
the process Q1. It is easy to see that in our setting

λ(k) = λ1,

µ(k) = µ1k + µ2, k ≤ N1,

µ(k) = µ1N1 + µ2, k > N1.

The condition we must verify is as follows [11]:

inf
k≥0

(

λ(k) + µ(k + 1)−
dk−1

dk
µ(k)−

dk+1

dk
λ(k + 1)

)

> 0, (15)

where constants dk must be positive. We take the following constants:

dk = 1, k = −1, · · · , N1 − 1,

dN1
= 1 + ǫ = δ,

dN1+k = δk+1, k ≥ 1,

where ǫ > 0 will be selected below. For k = 0, · · · , N1 − 2 we obtain, that
condition (15) indeed holds:

λ1 + µ1(k + 1) + µ2 − µ1k − µ2 − λ1 = µ1 > 0.

For k=N1 − 1, we have

λ1 + µ1N1 + µ2 − µ1(N1 − 1)− µ2 − (1 + ǫ)λ1 = µ1 − ǫλ1 > 0,

if we take ǫ < µ1/λ1. For k=N1 it follows that

λ1 + µ1N1 + µ2 −
1

1 + ǫ
(µ1N1 + µ2)− 1 + ǫλ1 > 0,
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if in turn, we select ǫ < (µ1N1 + µ2 − λ1)/λ1. Finally, for k ≥ N1 + 1, we have

λ1(1 + ǫ)2 + (1 + ǫ)2(µ1N1 + µ2)− (1 + ǫ)(µ1N1 + µ2) > 0,

if

ǫ <
1

λ1

(µ1N1 + µ2 − λ1).

Collecting all requirements to ǫ, we conclude that condition (15) is satisfied if
we select ǫ in such a way that the following inequality holds:

0 < ǫ < min
(µ1

λ1

,
µ1N1 + µ2 − λ1

λ1

)

. (16)

It remain to note that ǫ > 0, satisfying (16) exists by condition (14).
Denote EX1 the mean stationary number of busy servers in the 1st pool

(provided the 2nd pool is overloaded). It has been proved in [8], that if

λ1 − µ1EX1

µ12

+
λ2

µ2

< 1, (17)

then the system is stable. Using obtained above explicit expressions (11), (12)
for stationary distribution of the 1st pool, we calculate that

EX1 =

N1
∑

k=1

Pkk +N1P>N1

= P0

N1
∑

k=1

k
k
∏

i=1

ρi +N1P0

∞
∑

k=1

ρkN1

N1
∏

i=1

ρi

= P0

(

N1
∑

k=1

k
∏

i=1

ρi +N1

ρN1

1− ρN1

N1
∏

i=1

ρi

)

.

In particular, if N1 = 1, then we find the required parameter EX1 in (17):

EX1 = P0

(

ρ1 + ρ1
ρN1

2

1− ρN1

)

=
λ1(µ1 + µ2)

µ1
2 + µ1µ2 + λ1µ2

.

Note that, in this single-server case, the stationary number of busy servers
equals the stationary busy probability of the 1st pool (server) in the saturated
system, that is EX1 = Pb = 1− P0.

In the next section we check by simulation the monotone decrease of the
stationary idle probability P0 when threshold C increases.

4 Simulation results

In the following experiments, we demonstrate a monotonicity property of the
estimate P̂0 of the stationary idle probability in original system with fixed value
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of the threshold C > 0. We emphasize that these experiments have been started
in previous paper [4] where we shown, for the system with threshold C = 1,
that the estimate P̂0 of the stationary idle probability attains minimum in the
saturated system.

Let P̂
(o)
0 be the estimate of stationary idle probability P0 (of the 1st server)

in the saturated system. Denote the difference d̂ = P̂0 - P̂
(o)
0 . We show that

the minimum of estimate P̂0 is P̂
(o)
0 (when the 2nd server is permanently busy),

implying d̂ ≥ 0, provided the number of observations is large enough. For the
system with exponential service time and the following parameters

λ1 = 7, λ2 = 1, µ1 = 10, µ12 = 5, µ2 = 5,

the property is confirmed for C = 5 and C = 10, see Fig. 1 and Fig. 2, that
illustrate convergence of d̂ to 0.008 and 0.001, respectively.
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Fig. 1. Estimate d̂ for exponential service times, C=5
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Fig. 2. Estimate d̂ for exponential service times, C=10

This property is also confirmed for the system with Pareto service time,

F (x) = 1− (1/x)ki , x ≥ 1, i = 1, 2, (12),

with parameters

λ1 = 0.5, λ2 = 0.4, k1 = 3, k12 = k2 = 5.

Fig. 3 illustrates convergence of d̂ to 0.001 and Fig. 4 illustrates convergence
of d̂ to 0.002.
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Fig. 3. Estimate d̂ for Pareto service times, C=5
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Fig. 4. Estimate d̂ for Pareto service times, C=10
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Finally, we demonstrate that increasing C implies decreasing estimate P̂0.
We demonstrate it for the original model and model with the 2nd server over-
loaded by class-2 customers. Intuitively, this property is clear, because, when
C increases, then class-1 customers in general wait more time in the 1st queue
before jumping to pool 2. This property for 100000 arrivals, is confirmed for i)
exponential service time with parameters λ1 = 7, λ2 = 1, µ1 = 10, µ12 = 5,
µ2 = 5 (Fig. 5); and ii) for Pareto service time with parameters λ1 = 0.5, λ2 =
0.4, k1 = 3, k12 = k2 = 5 (Fig. 6).
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