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Abstract. In this paper, a large deviation probability in a single-server
retrial system is considered. In this model, if server is busy, an arriv-
ing customer joins the so-called virtual orbit and then attempts to enter
server again. We consider constant retrial rate discipline, in which case
only the top (oldest) orbital customer makes the attempts. The input
is assumed to be a general renewal process, service times are iid with
a general distribution and the retrial attempts follow an exponential
distribution. Such models are motivated by numerous applications in
modelling modern communication systems. We focus on the decay rate
of the probability that the orbit size reaches a high level N within busy
period. We compare retrial system to equivalent classic system with ser-
vice times of a special type. Simulation results show that original retrial
system can be approximated with the classic buffered model.
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Simulation · Asymptotics · Constant retrial rate.

1 Introduction

In this paper, we discuss a large deviation analysis of the stationary retrial system
with constant retrial rate. In constant retrial rate system, retrial rate remains
constant and does not depend on the orbit size. Retrial models are studied over
a few decades and very well motivated by practical applications in the modern
telecommunications systems, see for instance [10], [1], [8], [7], [9]. We focus on
the asymptotic behaviour of the stationary probability that the orbit size of the
system reaches a level N within busy period, as N → ∞. Under mild assump-
tions we show that this overflow probability has an exponential decay rate. The
study of decay rate is closely connected with various aspects of the Quality of
Service problem and in particular, plays a critical role in the analysis of the
effective bandwidths in communication networks [4]. Large deviation analysis
of the overflow probabilities are discussed in [11] (in classic systems) and [3] (in
tandem networks). The problem of calculating and estimating overflow probabil-
ity in retrial systems was considered previously in [5], [6] for queue size process
in MAP/G/1 systems.
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We show, that under appropriate moment assumptions the decay of the prob-
ability is exponential with the known exponent. More exactly, we obtain the lower
and upper exponential bounds for this decay rate. We discuss an interpretation
of the original retrial model as a classic buffered system with a slightly modified
mechanism of service.

The paper is organized as follows. In section 1 we give a short introduction.
In section 2.1, a detailed description of the single-server retrial systems with
constant retrial rate and the overflow probability asymptotic are given. In section
2.2, the equivalent classic buffered system is discussed. In section 3, simulation
results are presented.

2 Large deviation probability

2.1 Description of the model and main result

We consider a single-server retrial system with a renewal input of customers
arriving at instants tn, n > 1, with independent identically distributed (iid)
interarrival times τn := tn+1 − tn, n > 1, t1 = 0, and with the iid service times
Sn, n > 1. We denote a renewal input with rate λ := 1/Eτ ∈ (0,∞), and the
service rate of the system is µ := 1/ES ∈ (0,∞).

In a retrial system, if a new customer finds the server busy he joins an
infinite-capacity virtual orbit and attempts to occupy server after an exponen-
tially distributed time with rate γ. We consider a constant retrial rate system. It
means that retrial intensity of attempts equals γ and stays constant regardless
of the orbit size. In this case, for convenience, we treat the orbit as a FIFO queue
in which only the top (oldest) orbital customer makes attempts to enter server
[2].

Denote K0 the index of the first costumer which meets an empty system
upon arrival, and KN – the index of the first costumer which reaches the level
N within busy cycle. We consider an overflow probability P(KN < K0) that the
number of customers in the system reaches a (high) level N > 1 during busy
cycle.

There are two basic assumptions required for the large deviation analysis: the
system is in stationary regime and the possibility of an arbitrary (large) value
of the queue. The sufficient stability condition for retrial system is [2]

ρ := λ/µ < 1, (1)

and coincides with the stability criterion of classic buffered system GI/G/1. Also
we assume that

P(τ < S) > 0, (2)

so the arbitrary large value of the queue is possible.
For a random variable X, we introduce the log moment generating function,

ΛX(θ) := log E[eθX ]. (3)
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We assume that ΛS(θ) exists for some θ > 0. Denote

θ̂ = max(θ > 0 : EeθS < ∞). (4)

Define

θ∗ = sup(θ ∈ (0, θ̂) : Λτ (−θ) + ΛS(θ) 6 0) (5)

and

θ∗ = sup(θ ∈ (0, min(θ̂, γ)) : Λτ (−θ) + ΛS(θ) + log
γ

γ − θ
6 0). (6)

Theorem 1. Assume that conditions

λ <
γµ

γ + µ
(7)

and (2) hold. Then the decay rate of the overflow probability in single-server
constant rate retrial system satisfies

Λτ (−θ∗) 6 lim sup
N→∞

1

N
lnP(KN < K0) 6 Λτ (−θ∗), (8)

where θ∗ and θ∗ are defined in (5) and (6), respectively. The similar statement
holds with all limsups replaced by liminf.

To prove the statement presented in Theorem 1 we transform original retrial
system to a classic buffered system with special type of dependence between
service times

S̄ = S + I · exp(γ), (9)

where exp(γ) is a random variable (r.v.) exponentially distributed with param-
eter γ, and I is an indicator function

I =

{

1, if server is busy upon an arrival;

0, otherwise.

Service time S̄ (9) the retrial time. Such classic system is equivalent to original
retiral system from the point of view stability. To obtain a lower asymptotic
bound, we construct a minorant classic buffered system GI/G/1 with the min-
imal service times S̃ = S and use a monotonicity of the queue-size process. To
obtain an upper bound, we also construct a dominating classic buffered system
with the service time Ŝ = S+exp(γ). This approach allows to obtain exponential
decay rate of the overflow probability as N → ∞, with different exponents in
the asymptotic lower and upper bounds (5) and (6), respectively.
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2.2 An equivalent classic buffered system

Statement (8) in Theorem 1 can be rewritten as follows:

eNΛτ (−θ∗) 6 P(KN < K0) 6 eNΛτ (−θ
∗) + o(N) as N → ∞. (10)

Different exponents in the asymptotic lower and upper bounds (10) occur be-
cause we compare original retrial system with minorant and dominating classic
models with service times

S̃ 6 S̄ 6 Ŝ.

As retrial rate grows (γ → ∞) minorant, dominating and original systems co-
incide, parameters θ∗ → θ∗, upper bound approaches lower bound and we get
accurate exponential asymptotic for the overflow probability. If retrial rate γ
is not very large, we have to deal with lower and upper bounds with different
exponents.

In the retrial system customer goes to orbit if server is busy upon the arrival of
this customer. Occupation of server can be expressed by means of load coefficient
ρ = λ/µ. Hence, retrial system can be approximated by classic buffered system
with service times

Sc = S + I · exp(γ), (11)

where

I =

{

1,with probability ρ = λ/µ;

0,with probability 1− ρ.

3 Simulation results

In this section, we apply simulation to verify the accuracy of the obtained bounds
for the overflow probability.
Experiment 1. First we simulate M/M/1 retrial system with input rate λ = 2,
service rate µ = 3 and retrial rate γ = 30 and estimate the asymptotic probability
that orbit reaches level N during a busy cycle, as N increases. Using Theorem 1,
we calculate the lower and upper bounds, respectively, and compare them with
the estimated probability. Then we simulate M/G/1 classic system with infinite
buffer with input rate λ = 2 and service time Sc (see (11)) with

I =

{

1,with probability 2/3;

0,with probability 1/3.

We estimate the overflow probability that number of customers in this system
reaches level N during a busy cycle, and compare the results with theoretical
bounds and the original retrial system.

It is easy to see that parameters λ, µ and γ satisfy stability condition (7).
Moreover condition (2) is also satisfied. Thus we can use Theorem 1 to calculate
the bounds. Since inter-arrival and service times are exponential, then the lower
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Fig. 1. Estimations of the overflow probability in retrial system and equivalent classical
system and theoretical bounds vs overflow level N for γ = 30, M/M/1 retrial system,
logarithmic scale.

and upper bounds are easily available because the log moment generating func-
tion (3) is expressed analytically, while the values θ∗ and θ∗ are easily calculated.
In our experiment θ∗ = µ− λ = 1. To find θ∗, we solve equation (see (6))

θ2 + (λ− γ − µ)θ + γµ− λγ − λµ = 0,

and take solution θ∗ ≡ θ∗(γ) < min(µ, γ): θ∗(30) = 0.795. Since function Λτ can
be expressed analytically

Λτ (−θ) = log Eeθτ = log
λ

λ+ θ
, (12)

the bounds can be easily calculated.
The results are presented in Figure 1. It is seen that the estimated proba-

bilities both in the retrial and classic systems are indeed located between the
bounds. Moreover they are quite close to each other. It means that more simple
classic buffered system can be analysed instead of the origin retrial system.
Experiment 2. Now we consider M/Weibull/1 retrial system with exponential
input rate λ = 0.9 and Weibull service time S with the density

f(x) =
a

b

(x

b

)a−1

e−(x/b)a , x ≥ 0. (13)

It is well-known that

µ =
1

ES
=

1

bΓ (1 + 1
a )

, (14)
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Fig. 2. Estimations of the overflow probability in retrial system and equivalent classical
system and theoretical bounds vs overflow level N for γ = 30, M/Weibull/1 retrial
system, logarithmic scale.

where Γ is the gamma-function. In our experiment we take the following para-
meters of the Weibull distribution: a = 2 and b = 1. In this case function ΛS

can be explicitly calculated

ΛS(θ) = log EeθS = log

∞
∫

0

2xe−x
2
+θxdx = log

[

1 +
θ

2

√

πe
θ
2

4 (1− Φ(−θ/2))

]

,

(15)
where Φ(x) is Gauss error function

Φ(x) =
2
√

π

x
∫

0

e−t
2

dt.

It allows us to calculate values θ∗ and θ∗ and, as a results, the upper and lower
bounds, in an explicit form. Then we simulateM/G/1 classic system with infinite
buffer with input rate λ = 0.9 and service times Sc (11) with

I =

{

1,with probability 0.57;

0,with probability 0.43.

We estimate the overflow probability that number of customers in this system
reaches level N during a busy cycle, and compare the results with theoretical
bounds and the original retrial system. Results presented on Figure 2. Again,
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the estimated probabilities both in the retrial and classic systems are located

between the bounds and they are quite close to each other, as in experiment 1.

4 Conclusion

We consider retrial systems with constant retrial rate policy. The probability

that the orbit size of the system reaches a high level N , within busy period, is

studied. It is shown that the overflow probability has an exponential decay rate as

N → ∞. To establish the asymptotic rate, we compare the original retrial system

with the minorant and majorant classical buffered systems. The opportunities

to approximate retrial system with classic buffered system are discussed. We

present simulation results to demonstrate the accuracy of the obtained bounds.
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