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Abstract Random walks with additive increase and multiplicative de-

crease are widely used for performance control and modeling in telecom-

munication, smart spaces and some biological systems as well. There

exists in the literature two mainstream approaches which apply discrete

stepwise and piecewise linear random processes. Meanwhile most real

implementations of the algorithms used by the networking applications

support discrete arithmetics for its key variables. Therefore piecewise

linear models provide approximate results and the applicability of these

results needs further studies. In the paper we consider the connection

between discrete stepwise and piecewise linear models and provide the

boundary estimation for the important characteristic of the stepwise ran-

dom process in terms of the piecewise linear random process.
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1 Introduction

Random walks with additive increase and multiplicative decrease are widely used
in the modern networking environments for distributed control of the commu-
nication parties activity [19,22,24,25,23,20,21,9,7,14,8,17,16]. The Additive In-
crease Multiplicative Decrease (AIMD) algorithm implements the random walk
to provide flow control at the Internet transport layer. Different variations of
the algorithm are used by more than ten Transmission Control Protocol (TCP)
protocol implementations. According to AIMD, a source increases sending rate if
there is end-to-end route capacity available and decreases the rate if it receives a
congestion signal. Congestion avoidance AIMD algorithm described by [11], [2],
i.e. New Reno TCP version is widely implemented. The algorithm disadvantages
on the end-to-end paths that include high-speed, high bandwidth delay product
value or wireless links are widely discussed [4], [1]. Nevertheless the algorithm
provided exponential growth of the Internet during more than twenty years. Also
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its performance is used as a measure of fair share of the networking infrastruc-
ture and for tuning parameters of the experimental TCP versions, see e.g. [13].
Thus better understanding of New Reno behavior provides basis for further re-
search and a tool for an administrative solutions for the different networking
environments as well. At present, NewReno version of TCP is implemented in a
wide variety of modern OS kernels’ networking modules.

More sophisticated variations of the algorithm based on AIMD-kind random
walks are proposed to provide distributed performance control for highly con-
gested publish/subscribe IoT environments and smart spaces [26], [15]. As for
the data communication networks the algorithms are used by data sources so
in IoT environments or smart spaces they are implemented by the clients sub-
scribed for Semantic Information Brokers (SIB) service notifications. The clients
control the periods between notification requests. They increase it linearly if no
losses of notifications happened and decrease it by multiplication factor if the
losses occurred. The factor depends on the number of losses and several other
arguments.

Wide scope of the applications and strict demands to their performance define
the importance of modeling and analysis studies of the significant properties of
the random walks mentioned above.

In many cases their key performance metrics could be described by step-
wise random process with semi-markovian or renewal properties [12]. The state
space of the process is the set of non-negative integers and multiplication is fol-
lowed by the floor operation due to the nature of the communication protocols
i.e. amount of data expressed in bytes, number of rounds etc. are measured in
discrete values. Hence the corresponding random variables follow discrete prob-
ability distributions as well. Nevertheless in most researches [1] the stepwise
process is substituted by piecewise random process [12] with polynomial (as
usual linear) growth periods with markovain or renewal properties as well and
the floor operation is neglected. Therefore the space of state of the piecewise
linear random process is formed by non-negative real numbers. The piecewise
linear models allow avoiding many analytical problems rose by stepwise models,
make models simpler and tractable, but they ignore discrete nature of the ap-
plications, since the real values provided by AIMD variables are rounded before
further processing of the data to send. The substitute allows using of the pow-
erful methods of continuous functions analysis and hence yields simpler models
and stronger results. Meanwhile there are few works those research a connection
between the stepwise and corresponding piecewise linear process. In the paper
we study connection between parameters of such processes and their asymptotic
behavior.

There exists in the literature two different approaches to the description of
TCP data loss process. The first one considers the losses as a random flow. So
if τk and τk+1 are the moments of two consequent data losses, then the type of
distribution of [τk+1 − τk] intervals is an essential assumption of the model, see
e.g. [3]. The second approach treats the sequence of data sent and demands the
definition of the distribution function of r.v. Sn which is amount of data sent
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during [τk+1−τk] interval, e.g. [18]. Generally the area of TCP behavior research
and modeling is rather large, therefore for further information about state-of-art
in the area one can address to the survey [1].

This work considers the random walk implemented by AIMD algorithm as
stepwise process and piecewise linear process and establishes boundary estimate
which bounds steady state second moments of the congestion window size pro-
vided by these two models. To define data loss process we consider the sequence
of data sent between two consequent loss events. Following most of publication
we consider loss event as it is defined by NewReno TCP version and evaluate
the goodput.

The work is organized as follows. Section 2 describes two baseline models of
the AIMD random walk, Section 3 presents the theorem about the boundary
estimation and its proof. Section 4 contains conclusions.

2 Two baseline models of the additive increase and

multiplicative decrease random walk

First we describe the stepwise model of the random walk. Let us define the
random process which describes a behavior of AIMD congestion window size in
the terms of TCP segments.

Let tn be the moments of AIMD-rounds end-points. Hence [tn−1, tn] are
round trip intervals, and RTT length is ξn = tn − tn−1. Let us denote w(t)
a congestion windows size under AIMD control at the time moment t. Then
{w(t)}t>0 is a stepwise process such that

w(tn + 0) =











⌊αw(tn)⌋ , if during the interval (TCP round) [tn−1, tn]
one or more TCP segment losses has happened,

w(tn) + 1, if all data in the round were successfully delivered.

Between the moments tn the process {w(t)}t>0 stays constant and α < 1.

Let us suppose that ξn are independent identically distributed (iid.) random
variables with distribution R(x), which is absolutely continuous on the set R

+

and E[ξn] < ∞. Let us denote sequence {Sn}n>0 which describes amounts of data
sent between two consecutive loss events. We assume that Sn are iid. random
variables with finite expectation E[Sn] < ∞. The count of data sent starts from
the round next to the loss event. Let us denote wn = w(tn) and let τk = tn if a
loss event happened during ξn period, i.e.

w(τk + 0) = ⌊αw(τk)⌋ .

Also let us denote Wk = w(τk) so Wk = wn if τk = tn.

Then the sequence {Wk}k>0 forms the Markov chain embedded in the ran-
dom process {w(t)}t>0. Fig. 1 presents graphical example of {w(t)}t>0 evolution.
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Fig. 1. Stepwise random process

Now we consider a piecewise linear random process which presents the evo-
lution of the random walk. Let {X(t)}t>0 take values from R

+ growing lin-
early in the intervals [θn, θn+1) n = 0, 1, . . . with the speed b = E[ξn]

−1, i.e.
X(t) = X(t0) + bt, ∀ [t0, t] ⊂ [θn, θn+1). At random moments {θn}n≥0 the pro-
cess {X(t)}t>0 makes jumps X(θn+0) = αX(θn), where α < 1 and X(θn−0) =
X(t0) + bθn 6= αX(θn).

We assume that amounts of data sent between the moments {θn}n≥0 define a
sequence {ηn}n>0 which forms renewal process with continuous density renewal
function, cumulative distribution function F (x) and E[ηn] < ∞. We introduce a
sequence {Xn}n>0 such that Xn = X(θn), thus Xn = X(t) if X(t+0) = αX(t).
So a multiplicative decrease happens after each Xn value. Let us notice that
the sequence {Xn}n≥0 possesses Markovian property and it is embedded in the
process {X(t)}t>0. Fig. 2 presents graphical example of {X(t)}t>0 evolution.

There are many publication which derive E[Wn] or E[Xn] estimates under
various conditions and assumptions. The following section studies relation be-
tween these two values.

3 Comparison of the models

Under assumptions formulated above the following relation between stationary
(equipped with asterisk) expectations E[X∗2

] and E[W ∗2

] holds

Theorem 1. If E[Sn] = E[ηn] and b = 1 then

E[X∗2

]−
1

1− α2
≤ E[W ∗2

] ≤ E[X∗2

].
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Fig. 2. The piecewise linear random process of the congestion window size.

Proof. Simple geometrical considerations provide the following equation for the
sequence W 2

n
in the following form [10]

W 2
n+1 − α2W 2

n
=

2

p
,

where p is data segment loss probability for Bernoulli loss process. Using assump-
tions made on the piecewise process and following heuristic approach presented
in [10] yields

W 2
n+1 = ⌊α2W 2

n
⌋+ 2Sn, (1)

where ⌊x⌋ is the largest integer not exceeding x. Discrete nature of the units
and calculation methods used by networking software determine the using of the
floor operation in the equation (1). Nevertheless the operation poses significant
difficulties for the further analysis. Therefore let us transform the equation (1)
into the following form

W 2
n+1 = α2W 2

n
− γn + 2Sn,

where γn is the random value and 0 ≤ γn ≤ 1. According to [5] the Markov
chain {Wn} converges to steady state distribution if E[Sn] is finite. Let us study
heuristically the following dynamic

W̃ 2
n+1 = α2W̃ 2

n
+ (2Sn − γn). (2)

Applying recurrent equation (2) one can obtain stationary solution

W ∗
2

n
=

∞∑

i=0

α2i[2Sn−i−1 − γn−i−1].
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Therefore one can calculate the corresponding expectations as follows

E[W ∗
2

n
] =

∞∑

i=0

α2i
E[2Sn−i−1 − γn−i−1]

and, hence

E[W ∗
2

n
] =

∞∑

i=0

α2i (E[2Sn−i−1]− E[γn−i−1])

Notice that since α < 1 and ∀ n E[Sn] and E[γn] are finite the latter series
converges absolutely and therefore

E[W ∗
2

n
] =

1

1− α2
(2E[Sn]− E[γn]) . (3)

Since 0 ≤ γn ≤ 1 then 0 ≤ E[γn] ≤ 1 as well, and thus

2

1− α2
E[Sn]−

1

1− α2
≤ E[W 2

n
] ≤

2

1− α2
E[Sn].

Now let us consider the process X(t). According to [3] the sequence Xn can
be obtained from the following system

(Xn+1 + αXn) (Xn+1 − αXn)
1

2b
= ηn.

Then after trivial transformation one obtains

X2
n+1 = α2X2

n
+ 2bηn. (4)

Stochastic equation (4) satisfies conditions of convergence theorem formulated
in [6] since α < 1 and E[ηn] < ∞ and therefore it has the only finite stationary
solution in the following form

X∗
2

n
=

∞∑

i=0

α2i (2bηn−i−1)

Therefore applying expectation one obtains

E[X∗
2

n
] = 2b

∞∑

i=0

α2i
E[ηn−i−1]

and hence

E[X∗
2

n
] =

2b

1− α2
E[ηn]. (5)

Setting according to the theorem condition E[ηn] = E[Sn] and b = 1 one can
see that first term in the right hand side of (3) is equal to the expression in the
right-hand side of (5)

E[X∗
2

]−
1

1− α2
≤ E[W ∗

2

] ≤ E[X∗
2

]
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which proves the theorem. ⊓⊔

Let notice that e.g., NewReno version uses value α = 1/2 and congestion
window size normally fluctuates from several tens to several hundreds of seg-
ments for wide range of applications. In the case according to the theorem the
error of the piecewise model will be smaller than 4/3 which is insignificant for
the practical purposes.

Now let us consider the parameter b of the X(t) process and its role in the
modeling and estimates evaluation. The discrete stepwise models [10], [18] and
many others consider congestion window size evaluation in the discrete time scale
reduced to the natural numbers. Thus the embedded markov chain addresses to
the number of AIMD round and does not consider its length ξn. Hence con-
gestion window size becomes independent on RTT duration. This assumption
fairly reflects features of many practical networking environments and end-to-end
paths where TCP segment loss probability does not depend on the RTT dura-
tion. Moreover very reliable end-to-end paths may have long RTT periods e.g.
those incorporating satellite channels. Nevertheless RTT is used in calculation
of the throughput since there it could not be discarded. Thus the throughput is
estimated as

Bn =
Sn

Tn

,

where

Tn =

mn∑

k=1

ξk.

Here mn is the number of rounds which the sender needs to reach congestion
window size Wn+1 starting from congestion window size ⌊αWn⌋. Average mn is
estimated by most researchers as (1− α)E[Wn] [18], [1], [16], [14].

For the piecewise model, parameter b describes linear growth rate and de-
pends on two parameters of the networking environment. These are congestion
window increment size δ and RTT duration. These models use the ratio

b =
δ

E[ξ]
,

see [13],[3], [8], [1]. Therefore, piecewise linear models, exploring continuous time,
take into account RTT influence on congestion window size through ratio b,
which is used in the estimations of E[Xn]. So stepwise model considers more
narrow set of arguments for the evaluation of E[Wn], than the picewise models
do evaluating E[Xn]. Nevertheless both models use same set of the arguments
for the throughput (goodput) estimates. The theorem proved above uses the
restriction δ = 1 since it does not reduce the generality of the result.

4 Conclusion

In this paper the connection between stepwise and piecewise models of additive
increase multiplicative decrease random walk is obtained. The random walk de-
scribes a behavior of the networking software critical algorithms, smart spaces
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applications and some biological systems. The Markov chain embedded in the

stepwise random process and Markov sequence embedded in the piecewise linear

random processes are considered, and the theorem relating their parameters and

characteristics is proved. The results obtained demonstrate that piecewise lin-

ear model produces good estimation of the performance metrics for the discrete

algorithms based on the additive increase multiplicative decrease random walk.
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